期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DFFRLS和神经网络-ASRUKF算法的蓄电池SOC估计
被引量:
2
1
作者
顾钟凡
陈玉伟
+2 位作者
李承澳
张德春
黄海
《电气传动》
2022年第17期59-65,80,共8页
以3.5 V/20 A·h的磷酸铁锂电池为研究对象,针对其荷电状态(SOC)在线估计问题,建立二阶戴维南(Thevenin)等效RC电路模型,结合BP神经网络、动态遗忘因子最小递推二乘(DFFRLS)法和自适应平方根无迹卡尔曼滤波(ASRUKF)算法提出一种SOC...
以3.5 V/20 A·h的磷酸铁锂电池为研究对象,针对其荷电状态(SOC)在线估计问题,建立二阶戴维南(Thevenin)等效RC电路模型,结合BP神经网络、动态遗忘因子最小递推二乘(DFFRLS)法和自适应平方根无迹卡尔曼滤波(ASRUKF)算法提出一种SOC联合估计算法。采用BP神经网络代替多项式拟合开路电压-荷电状态(OCV-SOC)曲线,提高曲线拟合精度;通过DFFRLS在线辨识模型参数;结合ASRUKF算法进行SOC联合估计。研究表明提出的联合估计算法有效消除了因噪声协方差初值人为设定的误差并克服滤波发散导致状态协方差矩阵非半正定问题,达到获取最优SOC估计值的目的。在循环动态压力测试(DST)实验工况下,将联合估计算法与其他传统算法进行比较,结果表明提出的SOC联合估计算法具有更好的快速性、收敛性和精确性。
展开更多
关键词
蓄电池
BP神经网络
动态遗忘因子RLS
算法
自
适应
平方根
ukf
算法
SOC联合估计
下载PDF
职称材料
题名
基于DFFRLS和神经网络-ASRUKF算法的蓄电池SOC估计
被引量:
2
1
作者
顾钟凡
陈玉伟
李承澳
张德春
黄海
机构
河海大学能源与电气学院
出处
《电气传动》
2022年第17期59-65,80,共8页
基金
河海大学大学生创新创业训练计划资助项目(202010294129Y)。
文摘
以3.5 V/20 A·h的磷酸铁锂电池为研究对象,针对其荷电状态(SOC)在线估计问题,建立二阶戴维南(Thevenin)等效RC电路模型,结合BP神经网络、动态遗忘因子最小递推二乘(DFFRLS)法和自适应平方根无迹卡尔曼滤波(ASRUKF)算法提出一种SOC联合估计算法。采用BP神经网络代替多项式拟合开路电压-荷电状态(OCV-SOC)曲线,提高曲线拟合精度;通过DFFRLS在线辨识模型参数;结合ASRUKF算法进行SOC联合估计。研究表明提出的联合估计算法有效消除了因噪声协方差初值人为设定的误差并克服滤波发散导致状态协方差矩阵非半正定问题,达到获取最优SOC估计值的目的。在循环动态压力测试(DST)实验工况下,将联合估计算法与其他传统算法进行比较,结果表明提出的SOC联合估计算法具有更好的快速性、收敛性和精确性。
关键词
蓄电池
BP神经网络
动态遗忘因子RLS
算法
自
适应
平方根
ukf
算法
SOC联合估计
Keywords
battery
BP neural network
dynamic forgetting factor recursive least square(DFFRLS)algorithm
adaptive square root unscented Kalman filter(ASR
ukf
)algorithm
SOC joint estimation
分类号
TM911.3 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DFFRLS和神经网络-ASRUKF算法的蓄电池SOC估计
顾钟凡
陈玉伟
李承澳
张德春
黄海
《电气传动》
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部