期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于点的多尺度形态学重建滤波方法 被引量:1
1
作者 常兵涛 陈传法 +3 位作者 郭娇娇 武慧明 贝祎轩 李琳叶 《遥感学报》 EI CSCD 北大核心 2022年第12期2582-2593,共12页
针对现有机载激光雷达(LiDAR)点云滤波算法难以准确分离复杂地形中地面点与地物点问题,提出了一种基于点的多尺度形态学重建滤波方法 PMMF (Point-based Multi-scale Morphological reconstruction Filter)。在初始尺度层次下,PMMF通过... 针对现有机载激光雷达(LiDAR)点云滤波算法难以准确分离复杂地形中地面点与地物点问题,提出了一种基于点的多尺度形态学重建滤波方法 PMMF (Point-based Multi-scale Morphological reconstruction Filter)。在初始尺度层次下,PMMF通过构建一种基于点的形态学重建对原始点云滤波,即先在掩膜点云约束下借助k邻域结构元素和高程缓冲区反复膨胀标记点云,获取潜在地面点;然后通过自适应坡度方法剔除潜在地面点中的非地面点,其中,坡度阈值随地形复杂度自适应变化。在上层滤波结果基础上,PMMF通过提升种子点选择的网格尺度重复上层滤波过程,直至结果收敛。以国际摄影测量与遥感学会(ISPRS)发布的15组基准数据为研究对象,将PMMF滤波结果与近5年(2016年—2020年)提出的15种滤波算法比较表明,PMMF有8组数据滤波效果占优,15组数据平均总误差和Kappa系数分别为2.71%和91.08%。使用4种不同地形特征的高密度机载LiDAR点云数据进一步验证PMMF的滤波效果,并将计算结果与简单形态学滤波(SMRF)、布料模拟滤波(CSF)、渐进加密三角网滤波(PTD)和多分辨率层次滤波(MHF)比较。结果表明,PMMF滤波性能最优,平均总误差为3.24%,较其他4种滤波方法分别减小了12.0%、59.1%、70.1%和53.2%。 展开更多
关键词 机载LIDAR 点云滤波 形态学重建 测地膨胀 适应坡度阈值
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部