期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法 被引量:2
1
作者 赵洪山 孙承妍 +1 位作者 温开云 吴雨晨 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期65-73,I0002,共10页
针对分布式光伏普遍缺少气象量测装置而导致功率预测精度不足的问题,提出了一种基于自适应图卷积循环网络的分布式光伏出力超短期预测方法,可以在无气象数据的条件下,仅基于历史出力数据实现光伏出力精准预测。首先,分析了光伏出力数据... 针对分布式光伏普遍缺少气象量测装置而导致功率预测精度不足的问题,提出了一种基于自适应图卷积循环网络的分布式光伏出力超短期预测方法,可以在无气象数据的条件下,仅基于历史出力数据实现光伏出力精准预测。首先,分析了光伏出力数据兼具时序性和空间相关性,利用门控循环网络提取时序特征,利用自适应图卷积网络挖掘传统图卷积网络无法捕捉的光伏出力潜在空间相关性。然后,融合门控循环单元和自适应图卷积网络,构建自适应图卷积循环网络以提取多光伏站点出力的时空相关性,并利用注意力机制为不同时刻的时空特征分配权重。最后,通过全连接层输出最终的预测结果。采用某地区屋顶光伏实际出力数据在不同预测时间尺度下比较所提方法与其他方法的预测性能,结果表明,在没有气象数据的情况下,当预测尺度为15、30、60 min时,相比于传统门控循环网络,所提方法的平均绝对误差分别减少了16.9%、19.8%和30.5%。 展开更多
关键词 分布式光伏 超短期预测 时空相关性 无气象信息 适应图卷 门控循环单元
下载PDF
基于AGConv局部特征描述符的点云配准 被引量:3
2
作者 张文丽 程兰 +3 位作者 任密蜂 续欣莹 阎高伟 张喆 《计算机工程》 CAS CSCD 北大核心 2023年第11期231-237,共7页
为了提高现有点云配准模型在真实点云数据中的配准精度,基于自适应图卷积(AGConv)的局部特征描述符,提出一种改进的点云配准模型。在数据预处理模块中,通过对点云中的采样点构建局部块并计算局部参考坐标系,规范局部块中的采样点,使其... 为了提高现有点云配准模型在真实点云数据中的配准精度,基于自适应图卷积(AGConv)的局部特征描述符,提出一种改进的点云配准模型。在数据预处理模块中,通过对点云中的采样点构建局部块并计算局部参考坐标系,规范局部块中的采样点,使其对旋转变换不敏感。在特征提取模块中,利用AGConv为采样点生成自适应核,充分挖掘不同语义部分的点之间的关系,并将规范化的局部块输入基于AGConv的特征提取网络计算局部特征描述符,提高局部特征对遮挡及杂波的鲁棒性。在点云配准模块中,使用随机采样一致性算法估计刚性变换矩阵。在3DMatch数据集上的实验结果表明,相比于DIP模型,该模型的特征匹配和配准召回率分别提高了2.3和5个百分点,能有效提高点云配准精度并且具有较好的鲁棒性。 展开更多
关键词 点云配准 局部块 局部参考坐标系 适应图卷 特征描述符
下载PDF
基于自适应图卷积和注意力池化的点云分类与分割
3
作者 刘玉珍 张冬霞 陶志勇 《计算机工程与科学》 CSCD 北大核心 2024年第5期872-880,共9页
针对现有点云分类与分割方法使用最大池化聚合局部邻域特征,导致最大值以外的重要信息丢失的缺陷,提出一种结合自适应图卷积AdaptConv和注意力池化AP的点云分类与分割网络。首先,采用K近邻算法构建点云局部图结构,根据点的特征生成自适... 针对现有点云分类与分割方法使用最大池化聚合局部邻域特征,导致最大值以外的重要信息丢失的缺陷,提出一种结合自适应图卷积AdaptConv和注意力池化AP的点云分类与分割网络。首先,采用K近邻算法构建点云局部图结构,根据点的特征生成自适应卷积核,灵活精确地捕获点云的局部邻域特征;其次,为有效提高特征聚合能力,采用注意力池化定义能量函数得到权重值,加权并聚合出更具代表性的点云局部特征;最后,堆叠自适应图卷积和注意力池化逐层提取全局特征,提高网络的分类和分割精度。实验结果表明,相较基准方法,点云分类的平均类别精度提升0.9%,部件分割和语义分割的平均交并比分别提升0.8%和0.3%,证明所提方法可有效提升点云分类与分割的准确率,具有较高的鲁棒性。 展开更多
关键词 适应图卷 注意力池化 能量函数 最大池化
下载PDF
结合自适应图卷积与时态建模的骨架动作识别 被引量:1
4
作者 甄昊宇 张德 《计算机工程与应用》 CSCD 北大核心 2023年第18期137-144,共8页
图卷积神经网络在基于三维骨架数据的人体动作识别中得到了广泛的应用,自适应图卷积可以有效地学习和反映不同动作数据内部的相对位置关系,用于提取空间特征。在时间特征方面,多数方法通过叠加多层一维局部卷积来提取相邻时间步长之间... 图卷积神经网络在基于三维骨架数据的人体动作识别中得到了广泛的应用,自适应图卷积可以有效地学习和反映不同动作数据内部的相对位置关系,用于提取空间特征。在时间特征方面,多数方法通过叠加多层一维局部卷积来提取相邻时间步长之间的时间关系,而忽略了非相邻时间步长的关键时间信息。因此,提出一种结合自适应图卷积与多尺度时态建模的动作识别模型。其中,自适应图卷积以端到端的方式学习不同卷积层和数据样本的图拓扑结构,增加了图建模的灵活性;多尺度时态建模构建相邻时间步长和非相邻时间步长之间的时态关系,充分提取了骨架序列的时间动态特征。结果表明,与主流算法相比,该模型在NTU RGB+D和NTU RGB+D 120基准数据集上的准确率均有较大提升。 展开更多
关键词 人体骨架 动作识别 适应图卷 多尺度时态建模
下载PDF
融合自适应图卷积与Transformer序列模型的中文手语翻译方法 被引量:1
5
作者 应捷 徐文成 +2 位作者 杨海马 刘瑾 郑乐芊 《计算机应用研究》 CSCD 北大核心 2023年第5期1589-1594,1600,共7页
针对手语翻译方法所存在的动作特征提取以及时序翻译方面存在的问题,提出一种融合自适应图卷积AGCN与Transformer时序模型的AGCN-T手语翻译网络。自适应图卷积网络用于学习手语动作中骨骼节点的交互空间依赖信息;Transformer时序模块捕... 针对手语翻译方法所存在的动作特征提取以及时序翻译方面存在的问题,提出一种融合自适应图卷积AGCN与Transformer时序模型的AGCN-T手语翻译网络。自适应图卷积网络用于学习手语动作中骨骼节点的交互空间依赖信息;Transformer时序模块捕捉手语动作序列的时间关系特征信息并将其翻译成可理解的手语内容。此外,在预处理部分,提出了一种移动窗口的关键帧提取算法,并用MediaPipe姿态估计算法对关键帧图像序列进行骨架提取。实验表明,该方法在大型中文连续手语数据集CCSL的词错率达到了3.75%,精度为97.87%,优于其他先进的手语翻译方法。 展开更多
关键词 手语翻译 适应图卷 Transformer时序模型 关键帧提取 姿态估计
下载PDF
考虑路网拓扑时变的交通拥堵自适应预测方法研究 被引量:3
6
作者 梁军 彭嘉恒 《中国公路学报》 EI CAS CSCD 北大核心 2022年第9期157-170,共14页
对路网交通系统中的交通拥堵进行预测,有利于交通管理和避免交通风险。然而,由于交通管制、道路施工、恶劣天气、自然灾害等原因,路网交通系统的拓扑结构时常发生变化,使得依赖于固定路网拓扑的拥堵预测方法效果不佳。针对这一问题,提... 对路网交通系统中的交通拥堵进行预测,有利于交通管理和避免交通风险。然而,由于交通管制、道路施工、恶劣天气、自然灾害等原因,路网交通系统的拓扑结构时常发生变化,使得依赖于固定路网拓扑的拥堵预测方法效果不佳。针对这一问题,提出一种双重自适应图卷积循环网络结构(DAGCRN)来处理路网拓扑结构变化情况下的交通拥堵预测问题,该方法运用自适应辅助邻接矩阵对预定义的路网静态图结构进行适应性学习以动态优化原有连接间信息的传递,运用自适应嵌入邻接矩阵对预定义路网静态图结构进行路网隐藏信息的捕捉以确保路网拓扑结构的动态完整性,并采用门控循环单元提取路网交通流的时间特征信息。研究结果表明,DAGCRN具备以下特点:(1)能够有效捕捉和定位路网拓扑结构发生的变化,并能够在拓扑结构变化时仍然保证拥堵预测的精确率;(2)相比较一些常见预测模型有更高的预测准确率,尤其是长期预测方面和克服路网结构变化方面更具优势;(3)进一步的双重自适应功能消融试验,证实了含有自适应辅助邻接矩阵和自适应嵌入邻接矩阵的双重自适应图卷积结构对于路网拓扑结构变化有很强的自适应能力,缺少2个或任一个自适应模块,都会引起模型预测性能的大幅下降。 展开更多
关键词 交通工程 交通流预测 路网拓扑时变 交通拥堵 时空信息提取 适应图卷
原文传递
基于孪生自适应图卷积算法的点云分类与分割
7
作者 李维刚 陈婷 田志强 《计算机应用》 CSCD 北大核心 2023年第11期3396-3402,共7页
点云数据具有稀疏性、不规则性和置换不变性,缺乏拓扑信息,导致它的特征难以被提取,为此,提出一种孪生自适应图卷积算法(SAGCA)进行点云分类与分割。首先,构建特征关系图挖掘不规则、稀疏点云特征间的拓扑关系;其次,引入共享卷积学习权... 点云数据具有稀疏性、不规则性和置换不变性,缺乏拓扑信息,导致它的特征难以被提取,为此,提出一种孪生自适应图卷积算法(SAGCA)进行点云分类与分割。首先,构建特征关系图挖掘不规则、稀疏点云特征间的拓扑关系;其次,引入共享卷积学习权重的孪生构图思想,保证点云的置换不变性,使拓扑关系表达更准确;最后,采用整体、局部两种结合方式,将SAGCA与各种处理点云数据的深度学习网络相结合,增强网络的特征提取能力。分别在ScanObjectNN、ShapeNetPart和S3DIS数据集上进行分类、对象部件分割和场景语义分割实验的结果表明,相较于PointNet++基准网络,基于同样的数据集和评价标准,SAGCA分类实验的类别平均准确率(mAcc)提高了2.80个百分点,对象部件分割实验的总体类别平均交并比(IoU)提高了2.31个百分点,场景语义分割实验的类别平均交并比(mIoU)提高了2.40个百分点,说明SAGCA能有效增强网络的特征提取能力,适用于多种点云分类分割任务。 展开更多
关键词 点云数据 拓扑关系 孪生 适应图卷 分类 分割
下载PDF
面向高速公路通行时间分布预测的时空混合密度神经网络
8
作者 杜渐 段洪琳 +2 位作者 王振华 毛潇苇 文言 《计算机系统应用》 2023年第4期308-316,共9页
准确的通行时间分布预测可以全面地反映高速公路路网中各个路段在未来的通行状况,辅助实现高速公路中的路径规划,事故事件预警等精细化管理目标.为此,本文提出一种面向高速公路通行时间分布预测的时空混合密度神经网络.具体地,本文利用... 准确的通行时间分布预测可以全面地反映高速公路路网中各个路段在未来的通行状况,辅助实现高速公路中的路径规划,事故事件预警等精细化管理目标.为此,本文提出一种面向高速公路通行时间分布预测的时空混合密度神经网络.具体地,本文利用自适应图卷积通过数据驱动的方式提取路网中的空间特征,有效解决了基于预定义图难以捕获路网信息中完整空间相关性的问题.在时间维度上,不同时间的路网信息存在显著的相关性,因此,本文基于注意力机制自适应建模路网信息的时间相关性,并通过卷积层进一步聚合相邻时间步之间的信息.最后,基于自适应时空相关性建模得到的路段嵌入表示,通过混合密度网络建模通行时间的分布,以实现高速公路中各个路段的通行时间分布预测. 展开更多
关键词 通行时间分布预测 适应图卷 注意力机制 混合密度网络
下载PDF
时空自适应图卷积神经网络的骨架行为识别 被引量:6
9
作者 曹毅 刘晨 +1 位作者 黄子龙 盛永健 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第11期5-10,共6页
针对骨架行为识别缺乏全局上下文时间信息时域建模的能力、识别准确率与泛化性能均不理想的问题,提出了一种时间动作图的时间建模特征和一种时空自适应图卷积神经网络(ST-AGCN)骨架行为识别模型.首先,介绍了图表示理论与骨架序列,并设... 针对骨架行为识别缺乏全局上下文时间信息时域建模的能力、识别准确率与泛化性能均不理想的问题,提出了一种时间动作图的时间建模特征和一种时空自适应图卷积神经网络(ST-AGCN)骨架行为识别模型.首先,介绍了图表示理论与骨架序列,并设计了时间动作图和基于N阶固定时间结构的邻接矩阵;然后,基于非局部结构融合图卷积理论,提出了时域自适应图卷积网络(T-AGCN)结构;接着,结合空间自适应图卷积网络(S-AGCN)结构,提出了ST-AGCN骨架行为识别模型;最后,为验证该模型时域建模能力、识别准确率与泛化性能,基于NTU-RGB+D和SBU数据集开展了骨架行为识别实验.实验结果表明:该模型在上述数据集上的识别准确率最高分别为92.1%和99.5%,验证了该模型具有优秀的识别准确率和良好的泛化性能. 展开更多
关键词 骨架行为识别 时间动作图 非局部结构 时域适应图卷 时空适应图卷
原文传递
基于注意力增强的中心差分自适应图卷积的骨架行为识别 被引量:1
10
作者 白杉 冯秀芳 《计算机工程与科学》 CSCD 北大核心 2023年第7期1263-1273,共11页
近年来,由于图卷积网络在骨架动作识别领域的卓越表现而吸引了许多研究人员的关注,但大多数的图卷积只能聚合节点信息,忽略了中心节点与相邻节点的特征之间的差异。提出了一种基于多感受野注意力机制的中心差分自适应图卷积网络模型MRFA... 近年来,由于图卷积网络在骨架动作识别领域的卓越表现而吸引了许多研究人员的关注,但大多数的图卷积只能聚合节点信息,忽略了中心节点与相邻节点的特征之间的差异。提出了一种基于多感受野注意力机制的中心差分自适应图卷积网络模型MRFAM-CDAGC,它不仅可以自适应地聚合中心节点的图拓扑中的关联节点的信息,而且可以合并相邻节点之间的局部运动信息,聚合中心节点的梯度特征。加入的多感受野的注意力模块,使该网络模型能聚焦更加具有判别力的关键关节和帧信息,从而提高行为识别网络模型的准确率。该网络模型在NTU-RGB-D数据集的2个基准测试上分别达到了89.1%和96.0%的准确率,在大规模的数据集Kinetics上具有通用性,验证了该网络模型在提取时空特征和捕捉全局上下文信息上的优越性。 展开更多
关键词 行为识别 中心差分适应图卷 注意力机制 骨架识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部