期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应加权最小二乘支持向量机的短期负荷预测方法
被引量:
4
1
作者
杨春玲
李天云
王爱凤
《吉林电力》
2007年第3期18-20,42,共4页
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差...
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单,泛化性能好,不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。
展开更多
关键词
短期负荷预测
自
适应
参数优化
法
最小二乘支持向量机
下载PDF
职称材料
题名
基于自适应加权最小二乘支持向量机的短期负荷预测方法
被引量:
4
1
作者
杨春玲
李天云
王爱凤
机构
安徽电气工程职业技术学院
东北电力大学
出处
《吉林电力》
2007年第3期18-20,42,共4页
文摘
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单,泛化性能好,不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。
关键词
短期负荷预测
自
适应
参数优化
法
最小二乘支持向量机
Keywords
STLF
adaptive parameter optimization method
LS-SVM
分类号
TM715 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应加权最小二乘支持向量机的短期负荷预测方法
杨春玲
李天云
王爱凤
《吉林电力》
2007
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部