期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于稀疏贝叶斯模型的特征选择 被引量:4
1
作者 祝璞 黄章进 《计算机工程》 CAS CSCD 北大核心 2017年第4期183-187,193,共6页
通过采用稀疏贝叶斯推理方法,设计出可同时进行学习最优分类器与选取最优特征子集的特征选择概率分类向量机算法。该算法是对概率分类向量机特征选择的扩展,可提高其在高维数据集上的性能。通过选取零均值的高斯分布作为先验,在模型中... 通过采用稀疏贝叶斯推理方法,设计出可同时进行学习最优分类器与选取最优特征子集的特征选择概率分类向量机算法。该算法是对概率分类向量机特征选择的扩展,可提高其在高维数据集上的性能。通过选取零均值的高斯分布作为先验,在模型中起到正则项的作用,同时在核函数和特征中引入稀疏,得到泛化性更好的分类模型。在高维度和低维度数据集中的实验结果表明,该算法同时具有较好的分类和特征选择能力。 展开更多
关键词 机器学习 核函数 稀疏贝叶斯 特征选择 概率分类向量机 自动相关性检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部