PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydr...PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.展开更多
The applicability of a commercial Pt-Sn/Al2O3 isobutane dehydrogenation catalyst in dehydrogenation of propane was studied. Catalyst performance tests were carded out in a fixed-bed quartz reactor under different oper...The applicability of a commercial Pt-Sn/Al2O3 isobutane dehydrogenation catalyst in dehydrogenation of propane was studied. Catalyst performance tests were carded out in a fixed-bed quartz reactor under different operating conditions. Generally, as the factors improving propane conversion decrease the propylene selectivity, the optimal operating condition to maximize propylene yield is expected. The optimal condition was obtamed by the experimental design method. The investigated parameters were temperature, hydrogen/hydrocarbon (HE/HC) ratio and space velocity, being changed in three levels. Constrains such as the susceptibility of the catalyst components to sintering or phase transformation were also taken into account. Activity, selectivity and stability of the catalyst were considered as the measured response factors, while the space-time-yield (STY) was considered as the variable to be optimized due to its commercial interest. A STY of 16 mol.kg^-1.h^-1 was achieved under the optimal conditions of T= 620 ℃, H2/HC = 0.6 and, weight hourly space velocity (WHSV) = 2.2 h^-1. Single carbon-carbon bond rupture was found to be the main route for the formation of lower hydrocarbon byproducts.展开更多
The V-O-Al catalyst was prepared by hydrothermal-fluid drying synthesis method and was tested in the dehydrogenation of isobutane to isobutene. The catalysts were characterized by means of XRD, ESR, TPR and BET. The V...The V-O-Al catalyst was prepared by hydrothermal-fluid drying synthesis method and was tested in the dehydrogenation of isobutane to isobutene. The catalysts were characterized by means of XRD, ESR, TPR and BET. The V-O-Al catalyst, derived from hydrothermal synthesis and possessing a higher vanadia dispersion in the alumina and larger surface area, especially showed a better catalytic activity and marked stability than the supported vanadium oxide catalyst.展开更多
Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of h...Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes,particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.展开更多
A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke com...A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke combustion.Simulation shows that under practical operating conditions,multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature.However,at increased mass flow rate or lowered oxygen concentration,multi-steady states will not appear.Under the strong influences of film diffusion,the coke in the packed bed reactor will first be exhausted at the inlet,while if the film diffusion resistance is decreased,the position of first coke exhaustion moves toward the outlet of the reactor.展开更多
基金supports provided by the Production and Research Prospective Joint Research Project (BY2009153)the Science and Technology Support Program (BE2008129)of jiansu Province of chinathe National Natural Science Foundation of China(50873026)
文摘PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.
基金Supported by the Petrochemical Research&Technology Co. of National Petrochemical Co.
文摘The applicability of a commercial Pt-Sn/Al2O3 isobutane dehydrogenation catalyst in dehydrogenation of propane was studied. Catalyst performance tests were carded out in a fixed-bed quartz reactor under different operating conditions. Generally, as the factors improving propane conversion decrease the propylene selectivity, the optimal operating condition to maximize propylene yield is expected. The optimal condition was obtamed by the experimental design method. The investigated parameters were temperature, hydrogen/hydrocarbon (HE/HC) ratio and space velocity, being changed in three levels. Constrains such as the susceptibility of the catalyst components to sintering or phase transformation were also taken into account. Activity, selectivity and stability of the catalyst were considered as the measured response factors, while the space-time-yield (STY) was considered as the variable to be optimized due to its commercial interest. A STY of 16 mol.kg^-1.h^-1 was achieved under the optimal conditions of T= 620 ℃, H2/HC = 0.6 and, weight hourly space velocity (WHSV) = 2.2 h^-1. Single carbon-carbon bond rupture was found to be the main route for the formation of lower hydrocarbon byproducts.
文摘The V-O-Al catalyst was prepared by hydrothermal-fluid drying synthesis method and was tested in the dehydrogenation of isobutane to isobutene. The catalysts were characterized by means of XRD, ESR, TPR and BET. The V-O-Al catalyst, derived from hydrothermal synthesis and possessing a higher vanadia dispersion in the alumina and larger surface area, especially showed a better catalytic activity and marked stability than the supported vanadium oxide catalyst.
基金supported by the National Basic Research Program of China(2015CB856600)the National Natural Science Foundation of China(21422209,21432011,21421091)
文摘Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes,particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.
基金Supported by the National Natural Science Foundation of China(20736011) the Ministry of Education of China(IRT0721)
文摘A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke combustion.Simulation shows that under practical operating conditions,multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature.However,at increased mass flow rate or lowered oxygen concentration,multi-steady states will not appear.Under the strong influences of film diffusion,the coke in the packed bed reactor will first be exhausted at the inlet,while if the film diffusion resistance is decreased,the position of first coke exhaustion moves toward the outlet of the reactor.