We introduce a new model of one-dimensional (1D) photonic crystal composed of alternately arranged RHM and LHM layers with positive and negative refractive indices respectively, for which the transmission spectra of...We introduce a new model of one-dimensional (1D) photonic crystal composed of alternately arranged RHM and LHM layers with positive and negative refractive indices respectively, for which the transmission spectra of the model are calculated numerically with the transfer matrix method, and the bandgap structure and the polarization properties are analyzed. We found that the introduction of negative refractive index layers (i.e. LHM medium layers) gives rise to some peculiar band-gap structure and polarization properties as follows. Firstly, the forbidden bands are extremely wide and the transmission bands are very sharp without oscillation;and secondly, the change of incident angle has different influences on the forbidden bands of TE and TM modes. For the TM mode, the forbidden band width decreases substantially and finally vanishes, and for the TE mode with central wavelength, the total reflection happens at anv incident anale.展开更多
The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic cr...The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.展开更多
Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap pr...Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.展开更多
The binding energies of the lowest singlet and triplet states of positively charged excitons confined to a quantum disc are studied using exact diagonalization techniques. We investigate the dependence of the binding ...The binding energies of the lowest singlet and triplet states of positively charged excitons confined to a quantum disc are studied using exact diagonalization techniques. We investigate the dependence of the binding energies on the confinement strength and on the effective electron-to-hole mass ratio. The results we have obtained show that the binding energies are closely correlated to the strength of the confinement potential and the effective electron-to-hole mass ratio.展开更多
Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of control...Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of controllable vertical deposition method. The surface morphology and optical properties were studied by SEM and UV-Vis-NIR. It was found that the high-quality silica colloidal photonic crystals were obtained from ethanol solutions with environment temperature between 45℃ and 55℃, humidity between 66% and 76%, the volume fraction of microspheres is between 0.8% and 1.5%. The ordered close-packed photonic crystal fabricated by controllable vertical deposition method had the two photonic bandgaps in the visible light band and near infrared band.展开更多
文摘We introduce a new model of one-dimensional (1D) photonic crystal composed of alternately arranged RHM and LHM layers with positive and negative refractive indices respectively, for which the transmission spectra of the model are calculated numerically with the transfer matrix method, and the bandgap structure and the polarization properties are analyzed. We found that the introduction of negative refractive index layers (i.e. LHM medium layers) gives rise to some peculiar band-gap structure and polarization properties as follows. Firstly, the forbidden bands are extremely wide and the transmission bands are very sharp without oscillation;and secondly, the change of incident angle has different influences on the forbidden bands of TE and TM modes. For the TM mode, the forbidden band width decreases substantially and finally vanishes, and for the TE mode with central wavelength, the total reflection happens at anv incident anale.
文摘The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.
基金The project is supported by the key subject fund of Shanghaieducational administration
文摘Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.
文摘The binding energies of the lowest singlet and triplet states of positively charged excitons confined to a quantum disc are studied using exact diagonalization techniques. We investigate the dependence of the binding energies on the confinement strength and on the effective electron-to-hole mass ratio. The results we have obtained show that the binding energies are closely correlated to the strength of the confinement potential and the effective electron-to-hole mass ratio.
基金supported by the National Natural Science Foundation of China(Grant Nos.50425204,50272032&90401012)the Ministry of Sciences and Technology of China through 973-Project(Grants 2002CB61306&2001CB6104).
基金Aeronautic Science Foundation Programof China( 05G53038)
文摘Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of controllable vertical deposition method. The surface morphology and optical properties were studied by SEM and UV-Vis-NIR. It was found that the high-quality silica colloidal photonic crystals were obtained from ethanol solutions with environment temperature between 45℃ and 55℃, humidity between 66% and 76%, the volume fraction of microspheres is between 0.8% and 1.5%. The ordered close-packed photonic crystal fabricated by controllable vertical deposition method had the two photonic bandgaps in the visible light band and near infrared band.