期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
视觉Transformer预训练模型的胸腔X线影像多标签分类
被引量:
3
1
作者
邢素霞
鞠子涵
+2 位作者
刘子骄
王瑜
范福强
《中国图象图形学报》
CSCD
北大核心
2023年第4期1186-1197,共12页
目的基于计算机的胸腔X线影像疾病检测和分类目前存在误诊率高,准确率低的问题。本文在视觉Transformer(vision Transformer,ViT)预训练模型的基础上,通过迁移学习方法,实现胸腔X线影像辅助诊断,提高诊断准确率和效率。方法选用带有卷...
目的基于计算机的胸腔X线影像疾病检测和分类目前存在误诊率高,准确率低的问题。本文在视觉Transformer(vision Transformer,ViT)预训练模型的基础上,通过迁移学习方法,实现胸腔X线影像辅助诊断,提高诊断准确率和效率。方法选用带有卷积神经网络(convolutional neural network,CNN)的ViT模型,其在超大规模自然图像数据集中进行了预训练;通过微调模型结构,使用预训练的ViT模型参数初始化主干网络,并迁移至胸腔X线影像数据集中再次训练,实现疾病多标签分类。结果在IU X-Ray数据集中对ViT迁移学习前、后模型平均AUC(area under ROC curve)得分进行对比分析实验。结果表明,预训练ViT模型平均AUC得分为0.774,与不使用迁移学习相比提升了0.208。并针对模型结构和数据预处理进行了消融实验,对ViT中的注意力机制进行可视化,进一步验证了模型有效性。最后使用Chest X-Ray14和CheXpert数据集训练微调后的ViT模型,平均AUC得分为0.839和0.806,与对比方法相比分别有0.014~0.031的提升。结论与其他方法相比,ViT模型胸腔X线影像的多标签分类精确度更高,且迁移学习可以在降低训练成本的同时提升ViT模型的分类性能和泛化性。消融实验与模型可视化表明,包含CNN结构的ViT模型能重点关注有意义的区域,高效获取胸腔X线影像的视觉特征。
展开更多
关键词
胸腔
x
线
影像
多标签分类
卷积神经网络(CNN)
视觉Transformer(ViT)
迁移学习
原文传递
题名
视觉Transformer预训练模型的胸腔X线影像多标签分类
被引量:
3
1
作者
邢素霞
鞠子涵
刘子骄
王瑜
范福强
机构
北京工商大学
出处
《中国图象图形学报》
CSCD
北大核心
2023年第4期1186-1197,共12页
基金
国家自然科学基金项目(61671028)
北京市自然科学基金项目(KZ202110011015)。
文摘
目的基于计算机的胸腔X线影像疾病检测和分类目前存在误诊率高,准确率低的问题。本文在视觉Transformer(vision Transformer,ViT)预训练模型的基础上,通过迁移学习方法,实现胸腔X线影像辅助诊断,提高诊断准确率和效率。方法选用带有卷积神经网络(convolutional neural network,CNN)的ViT模型,其在超大规模自然图像数据集中进行了预训练;通过微调模型结构,使用预训练的ViT模型参数初始化主干网络,并迁移至胸腔X线影像数据集中再次训练,实现疾病多标签分类。结果在IU X-Ray数据集中对ViT迁移学习前、后模型平均AUC(area under ROC curve)得分进行对比分析实验。结果表明,预训练ViT模型平均AUC得分为0.774,与不使用迁移学习相比提升了0.208。并针对模型结构和数据预处理进行了消融实验,对ViT中的注意力机制进行可视化,进一步验证了模型有效性。最后使用Chest X-Ray14和CheXpert数据集训练微调后的ViT模型,平均AUC得分为0.839和0.806,与对比方法相比分别有0.014~0.031的提升。结论与其他方法相比,ViT模型胸腔X线影像的多标签分类精确度更高,且迁移学习可以在降低训练成本的同时提升ViT模型的分类性能和泛化性。消融实验与模型可视化表明,包含CNN结构的ViT模型能重点关注有意义的区域,高效获取胸腔X线影像的视觉特征。
关键词
胸腔
x
线
影像
多标签分类
卷积神经网络(CNN)
视觉Transformer(ViT)
迁移学习
Keywords
chest
x
-ray images
multi-label classification
convolutional neural network(CNN)
vision Transformer(ViT)
transfer learning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
R816.4 [自动化与计算机技术—计算机科学与技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
视觉Transformer预训练模型的胸腔X线影像多标签分类
邢素霞
鞠子涵
刘子骄
王瑜
范福强
《中国图象图形学报》
CSCD
北大核心
2023
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部