Insulin resistance is characterized as one of crucial pathological changes in type 2 diabetes mellitus(T2DM), and dyslipidaemia is frequently detected in T2DM. A variety of vanadium compounds have been studied as dr...Insulin resistance is characterized as one of crucial pathological changes in type 2 diabetes mellitus(T2DM), and dyslipidaemia is frequently detected in T2DM. A variety of vanadium compounds have been studied as drug candidates for diabetes based on their insulin-like action. However, few studies focus on their antilipolytic effect. In the present study, we established an insulin-resistant model in 3T3-L1 adipocytes to mimic pathological conditions of T2DM according to a well-established method by the treatment of high concentrations of glucose and insulin, which was validated by oil red O staining and the decreased levels of phosphorylated Akt, AS160 and GSK3 after insulin treatment. The results demonstrated that bis(acetylacetonato)-oxidovanadium(Ⅳ)(VO(acac)_2) could inhibit isoproterenol-stimulated lipolysis through the reduction of the phosphorylated HSL and perilipin levels in both insulin-sensitive and insulin-resistant 3T3-L1 adipocytes. Moreover, although the levels of phosphorylated Akt induced by VO(acac)_2 were decreased, the rates of lipolytic inhibition were not significantly altered compared with those under insulin-sensitive condition, indicating that the anti-lipolytic effect of VO(acac)_2 might also function in an Akt-independent way in insulin-resistant adipocytes. Our work here help elucidate the anti-diabetic effects of vanadium compounds. It may not only shed light on the utility of vanadium-based compounds as potential anti-diabetic drugs but also serve as a useful screening model for new anti-diabetic drugs.展开更多
基金supported by National Natural Science Foundation of China(Grant No.21171011 and 21671009)
文摘Insulin resistance is characterized as one of crucial pathological changes in type 2 diabetes mellitus(T2DM), and dyslipidaemia is frequently detected in T2DM. A variety of vanadium compounds have been studied as drug candidates for diabetes based on their insulin-like action. However, few studies focus on their antilipolytic effect. In the present study, we established an insulin-resistant model in 3T3-L1 adipocytes to mimic pathological conditions of T2DM according to a well-established method by the treatment of high concentrations of glucose and insulin, which was validated by oil red O staining and the decreased levels of phosphorylated Akt, AS160 and GSK3 after insulin treatment. The results demonstrated that bis(acetylacetonato)-oxidovanadium(Ⅳ)(VO(acac)_2) could inhibit isoproterenol-stimulated lipolysis through the reduction of the phosphorylated HSL and perilipin levels in both insulin-sensitive and insulin-resistant 3T3-L1 adipocytes. Moreover, although the levels of phosphorylated Akt induced by VO(acac)_2 were decreased, the rates of lipolytic inhibition were not significantly altered compared with those under insulin-sensitive condition, indicating that the anti-lipolytic effect of VO(acac)_2 might also function in an Akt-independent way in insulin-resistant adipocytes. Our work here help elucidate the anti-diabetic effects of vanadium compounds. It may not only shed light on the utility of vanadium-based compounds as potential anti-diabetic drugs but also serve as a useful screening model for new anti-diabetic drugs.