期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于聚合距离参数的改进K-means算法 被引量:26
1
作者 王巧玲 乔非 蒋友好 《计算机应用》 CSCD 北大核心 2019年第9期2586-2590,共5页
针对传统K均值聚类(K-means)算法随机选择初始中心及K值导致的聚类结果不确定且精度不高问题,提出了一种基于聚合距离的改进K-means算法。首先,基于聚合距离参数筛选出优质的初始聚类中心,并将其作用于K-means算法。然后,引入戴维森堡... 针对传统K均值聚类(K-means)算法随机选择初始中心及K值导致的聚类结果不确定且精度不高问题,提出了一种基于聚合距离的改进K-means算法。首先,基于聚合距离参数筛选出优质的初始聚类中心,并将其作用于K-means算法。然后,引入戴维森堡丁指数(DBI)作为算法的准则函数,循环更新聚类直到准则函数收敛,最后完成聚类。改进算法提供了优质的初始聚类中心及K值,避免了聚类结果的随机性。二维数值型仿真数据的聚类结果表明,改进算法在数据样本数达到10 000时仍能保持较好的聚类效果。针对Iris和Seg这两个UCI标准数据集的调整兰德系数,改进算法比传统算法性能分别提高了83.7%和71.0%,最终验证了改进算法比传统算法聚类结果的准确性更高。 展开更多
关键词 合距离参数 中心 评判指标 戴维森堡丁指数(DBI) 数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部