The preparation and micwave-absorbing behavior of nanosize PSZFe magnetic particles were studied.Nanosize PSZFe magnetic particles were prepared as following:nanosize Fe particles generated by themal decomposition of ...The preparation and micwave-absorbing behavior of nanosize PSZFe magnetic particles were studied.Nanosize PSZFe magnetic particles were prepared as following:nanosize Fe particles generated by themal decomposition of Fe(CO)-5 in organic solvents were encapsulated with synthesized polysilazane(PSZ) precursor and then irradiated under ultraviolet light.PSZFe particles were characterized by using transmission election microscope(TEM),X-Ray powder diffraction(XRD) and vibrating sample magntometer(VSM),and their microwave-adsorbing properties were measured by means of a vector network analyzer.The influence of the polysilazation layer on corrosion and magnetization of PSZFe particles and the relationship between polysilazation layer and micwave-absorbing behavior of PSZFe particles were investigated.Results showed that the average diameter of PSZFe particles was 30 nm,the structure of iron in PSZFe magnetic particles was α-Fe.The formation of a PSZ layer on nanosize Fe particles enchanced the corrosion resistance of PSZFe.In addition,PSZFe particles coated with 3 wt% PSZ demonstrated high corrosion resistance and fine microwave-absorbing ability as well.The reflection loss was less than -10 dB in the range of 9^8~16 GHz,and a reflection loss value of -20 dB was detected at 13 GHz.展开更多
文摘The preparation and micwave-absorbing behavior of nanosize PSZFe magnetic particles were studied.Nanosize PSZFe magnetic particles were prepared as following:nanosize Fe particles generated by themal decomposition of Fe(CO)-5 in organic solvents were encapsulated with synthesized polysilazane(PSZ) precursor and then irradiated under ultraviolet light.PSZFe particles were characterized by using transmission election microscope(TEM),X-Ray powder diffraction(XRD) and vibrating sample magntometer(VSM),and their microwave-adsorbing properties were measured by means of a vector network analyzer.The influence of the polysilazation layer on corrosion and magnetization of PSZFe particles and the relationship between polysilazation layer and micwave-absorbing behavior of PSZFe particles were investigated.Results showed that the average diameter of PSZFe particles was 30 nm,the structure of iron in PSZFe magnetic particles was α-Fe.The formation of a PSZ layer on nanosize Fe particles enchanced the corrosion resistance of PSZFe.In addition,PSZFe particles coated with 3 wt% PSZ demonstrated high corrosion resistance and fine microwave-absorbing ability as well.The reflection loss was less than -10 dB in the range of 9^8~16 GHz,and a reflection loss value of -20 dB was detected at 13 GHz.