目的制备姜黄素(Curcumin,Cur)聚乳酸羟基乙酸共聚物(PLGA)纳米粒(Cur-PLGA-NPs)并对其理化性质进行考察。方法采用改良的自乳化溶剂挥发法制备纳米粒,通过正交设计,以粒径、包封率和载药量为评价指标优化处方工艺。结果制备Cur-PLGA-NP...目的制备姜黄素(Curcumin,Cur)聚乳酸羟基乙酸共聚物(PLGA)纳米粒(Cur-PLGA-NPs)并对其理化性质进行考察。方法采用改良的自乳化溶剂挥发法制备纳米粒,通过正交设计,以粒径、包封率和载药量为评价指标优化处方工艺。结果制备Cur-PLGA-NPs的优化条件为PLGA 100 mg,泊洛沙姆188浓度1.0%,丙酮与乙醇体积比3∶1,有机相体积15 m L。按优化条件所制备的Cur-PLGA-NPs粒径为(120.33±2.44)nm,多分散系数为0.10±0.02,包封率为84.50%±1.13%,载药量为4.75%±0.22%。结论采用改良的自乳化溶剂挥发法成功制备了Cur-PLGA-NPs,为后续"纳米粒-脂质体系统"的研究奠定了基础,有望实现药物在肝脏的浓集。展开更多
Alginate microspheres were formed by coagulation of sodium alginate in CaCl 2 solutions,followed by lyophilization which could create the porous structure.Bovine serum albumin (BSA) was incorporated into the microsphe...Alginate microspheres were formed by coagulation of sodium alginate in CaCl 2 solutions,followed by lyophilization which could create the porous structure.Bovine serum albumin (BSA) was incorporated into the microspheres by mixing BSA with sodium alginate prior to coagulation.The release behavior of BSA from the Ca-alginate microspheres was studied.Further,the alginate microspheres loaded with BSA were embedded in PLGA films by mixing the alginate microspheres with PLGA solutions in order to study the sustained release of BSA from the PLGA film,which is widely used as cell scaffold materials in tissue engineering.The release behavior of BSA from the PLGA film embedded alginate microspheres indicated potential application for keeping the bioactivity of the growth factor.展开更多
目的 为了实现光热化疗联合治疗,提高抗肿瘤效果,将具有抗肿瘤作用的β-榄香烯(β-elemene,Ele)装载于聚乳酸羟基乙酸共聚物[poly(D,L-lactide-co-glycolic acid),PLGA]纳米粒(Ele-PLGA NPs)中,并在载药纳米粒表面进一步包覆了聚单宁酸(...目的 为了实现光热化疗联合治疗,提高抗肿瘤效果,将具有抗肿瘤作用的β-榄香烯(β-elemene,Ele)装载于聚乳酸羟基乙酸共聚物[poly(D,L-lactide-co-glycolic acid),PLGA]纳米粒(Ele-PLGA NPs)中,并在载药纳米粒表面进一步包覆了聚单宁酸(poly-tannic acid,pTA),制得Ele-PLGA-pTA纳米粒(Ele-PLGA-p TA NPs)。方法 首先利用O/W乳化法制备Ele-PLGA NPs,然后加入单宁酸与Fe3+发生络合反应,形成pTA分子层附着在Ele-PLGA NPs表面,最终形成ElePLGA-p TA NPs,通过马尔文激光粒度仪和透射电子显微镜对该系统的粒径、ζ电位、稳定性以及粒子形态进行考察;分别利用HPLC法和BCA试剂盒对β-榄香烯的载药量和单宁酸的包覆率进行测定;通过红外热成像仪评价PLGA-p TA NPs的光热升温效率和光热稳定性;通过MTT法考察载药纳米粒对Lewis肺癌细胞(Lewis lung cancer cell,LLC)的细胞毒性;通过建立小鼠LLC皮下肿瘤模型对Ele-PLGA-p TA NPs的体内光热-化疗联合抗肿瘤效果进行探究。结果 经测定,Ele-PLGAp TA NPs对β-榄香烯的载药量和单宁酸的包覆率分别为(6.6±0.1)%、(5.4±0.1)%。其形态呈球形,粒径为(202.9±2.7)nm,ζ电位为(-37.5±0.2)m V,分散性良好。体外光热性能考察结果表明,在近红外激光(NIR laser)的照射下,PLGAp TA NPs表现出良好的光热转换能力和光热稳定性。体外细胞实验结果表明,空白载体组(PLGA-pTA NPs)基本没有细胞毒性,与单一化疗组(Ele-PLGA-p TA NPs)相比,光热-化疗联合组(Ele-PLGA-p TA NPs+Laser)具有更强的细胞毒性。体内实验结果表明,与单纯光热治疗组(PLGA-p TA NPs+Laser)和单一化疗组(Ele-PLGA-pTA NPs)对照组相比,光热-化疗联合组(Ele-PLGA-p TA NPs+Laser)对小鼠肿瘤生长的抑制效果最为显著(P<0.001)。结论 所制备的Ele-PLGA-p TA NPs能够实现光热-化疗联合治疗,显著提高抗肿瘤效果。展开更多
文摘目的制备姜黄素(Curcumin,Cur)聚乳酸羟基乙酸共聚物(PLGA)纳米粒(Cur-PLGA-NPs)并对其理化性质进行考察。方法采用改良的自乳化溶剂挥发法制备纳米粒,通过正交设计,以粒径、包封率和载药量为评价指标优化处方工艺。结果制备Cur-PLGA-NPs的优化条件为PLGA 100 mg,泊洛沙姆188浓度1.0%,丙酮与乙醇体积比3∶1,有机相体积15 m L。按优化条件所制备的Cur-PLGA-NPs粒径为(120.33±2.44)nm,多分散系数为0.10±0.02,包封率为84.50%±1.13%,载药量为4.75%±0.22%。结论采用改良的自乳化溶剂挥发法成功制备了Cur-PLGA-NPs,为后续"纳米粒-脂质体系统"的研究奠定了基础,有望实现药物在肝脏的浓集。
文摘Alginate microspheres were formed by coagulation of sodium alginate in CaCl 2 solutions,followed by lyophilization which could create the porous structure.Bovine serum albumin (BSA) was incorporated into the microspheres by mixing BSA with sodium alginate prior to coagulation.The release behavior of BSA from the Ca-alginate microspheres was studied.Further,the alginate microspheres loaded with BSA were embedded in PLGA films by mixing the alginate microspheres with PLGA solutions in order to study the sustained release of BSA from the PLGA film,which is widely used as cell scaffold materials in tissue engineering.The release behavior of BSA from the PLGA film embedded alginate microspheres indicated potential application for keeping the bioactivity of the growth factor.
文摘目的 为了实现光热化疗联合治疗,提高抗肿瘤效果,将具有抗肿瘤作用的β-榄香烯(β-elemene,Ele)装载于聚乳酸羟基乙酸共聚物[poly(D,L-lactide-co-glycolic acid),PLGA]纳米粒(Ele-PLGA NPs)中,并在载药纳米粒表面进一步包覆了聚单宁酸(poly-tannic acid,pTA),制得Ele-PLGA-pTA纳米粒(Ele-PLGA-p TA NPs)。方法 首先利用O/W乳化法制备Ele-PLGA NPs,然后加入单宁酸与Fe3+发生络合反应,形成pTA分子层附着在Ele-PLGA NPs表面,最终形成ElePLGA-p TA NPs,通过马尔文激光粒度仪和透射电子显微镜对该系统的粒径、ζ电位、稳定性以及粒子形态进行考察;分别利用HPLC法和BCA试剂盒对β-榄香烯的载药量和单宁酸的包覆率进行测定;通过红外热成像仪评价PLGA-p TA NPs的光热升温效率和光热稳定性;通过MTT法考察载药纳米粒对Lewis肺癌细胞(Lewis lung cancer cell,LLC)的细胞毒性;通过建立小鼠LLC皮下肿瘤模型对Ele-PLGA-p TA NPs的体内光热-化疗联合抗肿瘤效果进行探究。结果 经测定,Ele-PLGAp TA NPs对β-榄香烯的载药量和单宁酸的包覆率分别为(6.6±0.1)%、(5.4±0.1)%。其形态呈球形,粒径为(202.9±2.7)nm,ζ电位为(-37.5±0.2)m V,分散性良好。体外光热性能考察结果表明,在近红外激光(NIR laser)的照射下,PLGAp TA NPs表现出良好的光热转换能力和光热稳定性。体外细胞实验结果表明,空白载体组(PLGA-pTA NPs)基本没有细胞毒性,与单一化疗组(Ele-PLGA-p TA NPs)相比,光热-化疗联合组(Ele-PLGA-p TA NPs+Laser)具有更强的细胞毒性。体内实验结果表明,与单纯光热治疗组(PLGA-p TA NPs+Laser)和单一化疗组(Ele-PLGA-pTA NPs)对照组相比,光热-化疗联合组(Ele-PLGA-p TA NPs+Laser)对小鼠肿瘤生长的抑制效果最为显著(P<0.001)。结论 所制备的Ele-PLGA-p TA NPs能够实现光热-化疗联合治疗,显著提高抗肿瘤效果。