-
题名适于高动态视频场景下的城市道路违停检测算法
- 1
-
-
作者
程梁华
黄瑞雪
沈鑫
-
机构
重庆大学计算机学院
信息物理社会可信服务计算教育部重点实验室(重庆大学)
解放军陆军勤务学院勤务指挥系
-
出处
《计算机科学》
CSCD
北大核心
2024年第12期190-198,共9页
-
基金
国家自然科学基金(62172063)。
-
文摘
日益突出的停车矛盾导致城市道路违停现象严重,给城市交通带来巨大安全隐患。因此,及时有效地监测并处理违停事件对于保障城市交通安全至关重要。然而,现有基于人工巡检和固定摄像头的违停监测方式存在效率低、监测范围受限等缺点,难以满足大规模城市违停监管的需求。群车感知作为一种新兴感知范式,通过激励用户在行车过程中采集道路视频并上传至云端进行监测,能为大规模、低成本的城市违停监管提供重要手段。然而车载视频场景十分复杂,这导致了车辆追踪目标的高丢失性和违停判断的高复杂性,给实现精准违停检测提出了严峻挑战。为应对上述挑战,提出适于高动态视频场景下的城市道路违停检测算法。具体地,首先通过对车载视频进行多车辆目标追踪,以跨视频帧追踪获取车辆图像信息;然后通过动态视觉测距将目标车辆图像信息转换为真实场景中的相对距离变化,并结合车间相互运动实现违停判断;最后,基于重庆市道路数据集对所提算法进行性能评估。实验结果表明,所提算法的违停车辆检测精度为87.1%,相比3种对比算法平均提高21.9%,且在不同违停场景下均表现出优异检测性能。
-
关键词
违章停车检测
群车感知
车载视频
多目标追踪
动态视觉测距
-
Keywords
Illegal on-road parking detection
Vehicular crowdsensing
In-vehicle video
Multiple targets tracking
Dynamic visual ranging
-
分类号
TP393
[自动化与计算机技术—计算机应用技术]
-