期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
网络表示学习算法的分析与验证 被引量:4
1
作者 王岩 唐杰 《中文信息学报》 CSCD 北大核心 2019年第2期97-104,共8页
网络表示学习算法是社交网络分析领域的一个热点问题。该文旨在研究现有的各种网络表示学习算法,并分析各类算法在不同结构的网络数据中的性能,对3大类别、共10种网络表示学习算法在8个网络上进行了网络节点的多标签分类以验证算法的性... 网络表示学习算法是社交网络分析领域的一个热点问题。该文旨在研究现有的各种网络表示学习算法,并分析各类算法在不同结构的网络数据中的性能,对3大类别、共10种网络表示学习算法在8个网络上进行了网络节点的多标签分类以验证算法的性能,以此来全面评价各类算法的效果、效率和应用范围。实验结果表明,DeepWalk这种流行的深度学习算法在各种类型的网络中有着稳定而较好的效果。而基于矩阵分解算法的应用,则受限于其较高的空间复杂度。 展开更多
关键词 网络表示学习算法 矩阵分解 深度学习模型
下载PDF
基于网络表示学习的链路预测算法 被引量:3
2
作者 杨晓翠 宋甲秀 张曦煌 《计算机科学与探索》 CSCD 北大核心 2019年第5期812-821,共10页
网络是表达对象之间复杂联系的重要形式,广泛存在。而链路预测作为网络分析的重要方法,具有很大的研究意义和应用价值。传统的链路预测算法普遍是基于邻接矩阵的稀疏表示方案而设计,计算效率低且扩展性差。首先引入网络表示学习的概念,... 网络是表达对象之间复杂联系的重要形式,广泛存在。而链路预测作为网络分析的重要方法,具有很大的研究意义和应用价值。传统的链路预测算法普遍是基于邻接矩阵的稀疏表示方案而设计,计算效率低且扩展性差。首先引入网络表示学习的概念,创新性地提出基于几何布朗运动的随机游走算法GbmRw,然后进一步设计出网络表示学习算法GBMLA,实现更具区分能力与表达能力的网络表示,最后以节点表示向量的欧式距离来表征节点之间的相似性,从而预测其链路存在的可能性。不同领域的多个网络中进行反复实验的结果表明,该算法较之于基于原始网络设计的传统算法,预测效果得到了明显的提升,也进一步肯定了网络表示学习对于链路预测工作的重要意义。 展开更多
关键词 链路预测 几何布朗运动 随机游走算法 网络表示学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部