The dielectric functions of GaN for the temperature and frequency ranges of 10–300 K and 0.3–1 THz are obtained using terahertz time-domain spectroscopy.It is found that there are oscillations of the dielectric func...The dielectric functions of GaN for the temperature and frequency ranges of 10–300 K and 0.3–1 THz are obtained using terahertz time-domain spectroscopy.It is found that there are oscillations of the dielectric functions at various temperatures.Physically,the oscillation behavior is attributed to the resonance states of the point defects in the material.Furthermore,the dielectric functions are well fitted by the combination of the simple Drude model together with the classical damped oscillator model.According to the values of the fitting parameters,the concentration and electron lifetime of the point defects for various temperatures are determined,and the temperature dependences of them are in accordance with the previously reported result.Therefore,terahertz time-domain spectroscopy can be considered as a promising technique for investigating the relevant characteristics of the point defects in semiconductor materials.展开更多
Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrati...Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrations of hexagonal YMnO3 are quite different from those of orthorhombic YMnO3. Defect calculation finds that O Frenkel is the most probable intrinsic disorder, and Mn antisite defect is favorable to exist, especially for Mn ions entering the Y2 sites. It is also found that holes prefer to localize at O2sites rather than at Mn3+ sites, while the electron can be localized at the Mn3+ site. The disproportionation of Mn3+ ions is unlikely to occur in hexagonal YMnO3.展开更多
基金supported by the Special Funds for Major State Basic Research Project (Grant No. 2011CB301900)the 973 project of the Ministry of Science and Technology of China (Grant No. 2011CBA00107)+4 种基金the Hi-tech Research Project (Grant No. 2011AA03A103)the National Natural Science Foundation of China (Grant Nos. 60990311, 60820106003, 60906025, 60936004, 61176063, 61071009, and 61027008)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090091110040)the Natural Science of Foundation of Jiangsu province (Grant Nos. BK2011010, BK2010385, and BK2010178)the Fok Ying-Tong Education Foundation (Grant No. 122028)
文摘The dielectric functions of GaN for the temperature and frequency ranges of 10–300 K and 0.3–1 THz are obtained using terahertz time-domain spectroscopy.It is found that there are oscillations of the dielectric functions at various temperatures.Physically,the oscillation behavior is attributed to the resonance states of the point defects in the material.Furthermore,the dielectric functions are well fitted by the combination of the simple Drude model together with the classical damped oscillator model.According to the values of the fitting parameters,the concentration and electron lifetime of the point defects for various temperatures are determined,and the temperature dependences of them are in accordance with the previously reported result.Therefore,terahertz time-domain spectroscopy can be considered as a promising technique for investigating the relevant characteristics of the point defects in semiconductor materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. U0734001 and 50772054)the Ministry of Science and Technology of China (Grant No. 2009CB929202)
文摘Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrations of hexagonal YMnO3 are quite different from those of orthorhombic YMnO3. Defect calculation finds that O Frenkel is the most probable intrinsic disorder, and Mn antisite defect is favorable to exist, especially for Mn ions entering the Y2 sites. It is also found that holes prefer to localize at O2sites rather than at Mn3+ sites, while the electron can be localized at the Mn3+ site. The disproportionation of Mn3+ ions is unlikely to occur in hexagonal YMnO3.