期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种快速的多尺度多输入编码树单元互补分类网络
1
作者 唐述 周广义 +2 位作者 谢显中 赵瑜 杨书丽 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3646-3653,共8页
深度神经网络(DNN)已被广泛应用到高效视频编码(HEVC)编码树单元(CTU)的深度划分中,显著降低了编码复杂度。然而现有的基于DNN的CTU深度划分方法却忽略了不同尺度编码单元(CU)间的特征相关性和存在着分类错误累积等缺陷。基于此,该文提... 深度神经网络(DNN)已被广泛应用到高效视频编码(HEVC)编码树单元(CTU)的深度划分中,显著降低了编码复杂度。然而现有的基于DNN的CTU深度划分方法却忽略了不同尺度编码单元(CU)间的特征相关性和存在着分类错误累积等缺陷。基于此,该文提出一种多尺度多输入的互补分类网络(MCCN)来实现更高效且更准确的HEVC帧内CTU深度划分。首先,提出一种多尺度多输入的卷积神经网络(MMCNN),通过融合不同尺度CU的特征来建立CU间的关联,进一步提升网络的表达能力。然后,提出一种互补的分类策略(CCS),通过结合二分类和三分类,并采用投票机制来决定CTU中每个CU的最终深度值,有效避免了现有方法中存在的错误累积效应,实现了更准确的CTU深度划分。大量的实验结果表明,该文所提MCCN能够更大程度降低HEVC编码的复杂度,同时实现更准确的CTU深度划分:仅以增加3.18%的平均增量比特率(BD-BR)为代价,降低了71.49%的平均编码复杂度。同时,预测32×32 CU和16×16 CU的深度准确率分别提升了0.65%~0.93%和2.14%~9.27%。 展开更多
关键词 深度神经网络 帧内高效视频编码 特征表示 编码单元深度划分 多尺度多输入 互补分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部