期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
一种基于序列到序列时空注意力学习的交通流预测模型 被引量:33
1
作者 杜圣东 李天瑞 +3 位作者 杨燕 王浩 谢鹏 洪西进 《计算机研究与发展》 EI CSCD 北大核心 2020年第8期1715-1728,共14页
城市交通流预测是研究交通时空序列数据的动态演化并预测未来交通情况的关键技术,对于智能交通预警及管理决策来讲至关重要.但是有效的交通流建模非常具有挑战性,因为它受到很多复杂因素的影响,例如交通网络的时空依赖性和序列突变性等... 城市交通流预测是研究交通时空序列数据的动态演化并预测未来交通情况的关键技术,对于智能交通预警及管理决策来讲至关重要.但是有效的交通流建模非常具有挑战性,因为它受到很多复杂因素的影响,例如交通网络的时空依赖性和序列突变性等问题.一些研究工作将卷积神经网络(convolutional neural networks, CNN)或循环神经网络(recurrent neural networks, RNN)用于交通流量预测建模.但是,直接使用经典的深度学习模型难以有效捕获与交通流相关的多通道多变量序列数据中的隐含时空依赖性特征.针对上述问题,提出了一种新的序列到序列时空注意力深度学习框架(spatial-temporal attention traffic forecasting, STATF)来处理城市交通流建模任务,它是一种基于卷积LSTM编码层和LSTM解码层,并辅助注意力机制的端到端深度学习模型,可以自适应地学习与城市交通流相关的多通道多变量时空序列数据中的时空依赖性和非线性相关性特征.基于3个真实的交通流数据集实验结果表明:不管是单步预测还是多步预测条件下,STATF模型都具有更优的预测性能. 展开更多
关键词 交通流预测 长短时记忆网络 序列到序列学习 时空注意力 编码器-解码器
下载PDF
一种基于改进的MobileNetV2网络语义分割算法 被引量:26
2
作者 孟琭 徐磊 郭嘉阳 《电子学报》 EI CAS CSCD 北大核心 2020年第9期1769-1776,共8页
基于金字塔卷积神经网络的语义分割算法准确率很高,但是其计算资源消耗巨大、算法执行时间长、无法满足实时性要求.为了解决这个问题,本文做出了以下改进:(1)用MobileNet替换原网络的结构,减少了网络运算时间和内存开销;(2)引入编码器-... 基于金字塔卷积神经网络的语义分割算法准确率很高,但是其计算资源消耗巨大、算法执行时间长、无法满足实时性要求.为了解决这个问题,本文做出了以下改进:(1)用MobileNet替换原网络的结构,减少了网络运算时间和内存开销;(2)引入编码器-解码器结构提高输出图像的分辨率,进一步细化分割结果;(3)针对高分辨率图像推断时间过长的问题,本文设计了多级图像输入方法,降低了网络推断高分辨率图像所消耗的时间.本文在VOC 2012数据集和Cityscapes数据集上进行了测试,并与FCN、SegNet、DeepLab、PSPNet以及DFN等语义分割模型对比.实验结果表明,本文设计的语义分割算法在VOC 2012数据集上达到了76.1%的mIoU,在Cityscapes数据集上达到了74.1%的mIoU,略低于传统语义分割算法;处理一张分辨率为1024×512的图片需要18ms,少于传统语义分割算法,满足了实时性要求,达到了准确率与计算资源消耗之间的平衡. 展开更多
关键词 语义分割 卷积神经网络 金字塔网络 快速语义分割 MobileNet 编码器-解码器
下载PDF
预标准化Transformer在乌英机器翻译中的实现 被引量:13
3
作者 高巍 陈子祥 +1 位作者 李大舟 李耀松 《小型微型计算机系统》 CSCD 北大核心 2020年第11期2286-2291,共6页
随着人工智能技术的高速发展,基于神经网络的机器翻译技术愈发受到人们的重视.然而,限于有限的数据资源,基于该方法的小语种翻译效果并不理想.乌尔都语作为印度和巴基斯坦的官方语言被广泛使用,实现它与英语之间的翻译模型具有重要意义... 随着人工智能技术的高速发展,基于神经网络的机器翻译技术愈发受到人们的重视.然而,限于有限的数据资源,基于该方法的小语种翻译效果并不理想.乌尔都语作为印度和巴基斯坦的官方语言被广泛使用,实现它与英语之间的翻译模型具有重要意义.本文基于编码器-解码器框架,提出了一种预标准化Transformer的乌英机器翻译模型.该模型在基准Transformer模型上增加了预标准化层,保证数据分布一致的同时避免发生梯度消失.实验采用BLEU作为评价指标.实验表明,在少量乌尔都语与英语平行语料库的基础上,本文提出的基于预标准化Transformer的乌英机器翻译模型能够取得较好的结果.与基准Transformer模型相比在BLEU值上有了一定的提高. 展开更多
关键词 机器翻译 乌尔都语 预标准化Transformer 编码器-解码器 BLEU
下载PDF
基于多时空图卷积网络的交通流预测 被引量:11
4
作者 戴俊明 曹阳 +1 位作者 沈琴琴 施佺 《计算机应用研究》 CSCD 北大核心 2022年第3期780-784,共5页
交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convol... 交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convolutional network,MST-GCN)模型。首先,利用切比雪夫图卷积(ChebNet)结合门控循环单元(GRU)构建时空组件以深度挖掘节点的时空相关性;其次,分别提取周相关、日相关、邻近时间的序列数据,输入三个时空组件以深度挖掘不同时间窗口间的时间相关性;最后,将时空组件与编码器—解码器网络结构(encoder-decoder)融合组建MST-GCN模型。利用加利福尼亚州交通局(Caltrans)性能评估系统中高速公路数据集PEMS04和PEMS08进行实验,结果表明新模型的性能明显优于门控循环单元模型和最近提出的扩散卷积循环神经网络(DCRNN)、时间图卷积网络(T-GCN)、基于注意力机制的时空图卷积神经网络(ASTGCN)和时空同步图卷积网络(STSGCN)模型。 展开更多
关键词 交通流预测 时空相关性 编码器解码器 切比雪夫多项式 图卷积网络
下载PDF
一种改进DeepLabV3+网络的高分辨率遥感影像道路提取方法 被引量:10
5
作者 葛小三 曹伟 《遥感信息》 CSCD 北大核心 2022年第1期40-46,共7页
道路网络提取是高分辨率遥感影像数据应用研究的难点之一。针对现有的道路提取方法普遍注重区域精度而边界质量缺失考虑的问题,提出一种基于DeepLabV3+语义分割神经网络的深度学习提取道路的方法。该网络模型采用编码器-解码器网络(enco... 道路网络提取是高分辨率遥感影像数据应用研究的难点之一。针对现有的道路提取方法普遍注重区域精度而边界质量缺失考虑的问题,提出一种基于DeepLabV3+语义分割神经网络的深度学习提取道路的方法。该网络模型采用编码器-解码器网络(encoder-decoder)和多孔空间金字塔池(atrous spatial pyramid pooling,ASPP)相结合的方式,增强了对道路边界的划分效果。模型在Massachusetts roads数据集进行了道路网络提取实验。分析结果表明,基于该方法的道路提取精度优于U-Net等网络模型,F1分数达到87.27%,与其他方法相比较,该方法能够更有效、完整地从遥感图像中提取道路。 展开更多
关键词 编码器-解码器 多孔金字塔池化 道路提取 DeepLabV3+ 深度学习
下载PDF
基于编解码卷积神经网络的单张图像深度估计 被引量:10
6
作者 贾瑞明 刘立强 +1 位作者 刘圣杰 崔家礼 《图学学报》 CSCD 北大核心 2019年第4期718-724,共7页
针对传统方法在单目视觉图像深度估计时存在鲁棒性差、精度低等问题,提出一种基于卷积神经网络(CNN)的单张图像深度估计方法。首先,提出层级融合编码器-解码器网络,该网络是对端到端的编码器-解码器网络结构的一种改进。编码器端引入层... 针对传统方法在单目视觉图像深度估计时存在鲁棒性差、精度低等问题,提出一种基于卷积神经网络(CNN)的单张图像深度估计方法。首先,提出层级融合编码器-解码器网络,该网络是对端到端的编码器-解码器网络结构的一种改进。编码器端引入层级融合模块,并通过对多层级特征进行融合,提升网络对多尺度信息的利用率。其次,提出多感受野残差模块,其作为解码器的主要组成部分,负责从高级语义信息中估计深度信息。同时,多感受野残差模块可灵活地调整网络感受野大小,提高网络对多尺度特征的提取能力。在NYUD v2数据集上完成网络模型有效性验证。实验结果表明,与多尺度卷积神经网络相比,该方法在精度δ<1.25上提高约4.4%,在平均相对误差指标上降低约8.2%。证明其在单张图像深度估计的可行性。 展开更多
关键词 CNN 编码器-解码器 深度估计 单目视觉
下载PDF
基于残差密集块与注意力机制的图像去雾网络 被引量:9
7
作者 李硕士 刘洪瑞 +2 位作者 甘永东 朱新山 张军 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期112-118,共7页
基于卷积神经网络的单幅图像去雾算法虽然取得了一定进展,但仍然存在去雾不完全和伪影等问题.基于这一现状,提出了一种以编码器-解码器结构为基本框架,融合注意力机制与残差密集块的单幅图像去雾网络.首先,利用网络中的编码器、特征恢... 基于卷积神经网络的单幅图像去雾算法虽然取得了一定进展,但仍然存在去雾不完全和伪影等问题.基于这一现状,提出了一种以编码器-解码器结构为基本框架,融合注意力机制与残差密集块的单幅图像去雾网络.首先,利用网络中的编码器、特征恢复模块和解码器三个部分直接对去雾后的图像进行预测;然后,在网络中引入本文所设计的带有注意力机制的残差密集块,提升网络的特征提取能力;最后,基于注意力机制提出自适应跳跃连接模块,增强网络对去雾图像细节的恢复能力.实验结果表明,与现有去雾方法相比,提出的去雾网络在合成有雾图像数据集和真实有雾图像上均取得了较为理想的去雾效果. 展开更多
关键词 图像去雾 深度神经网络 编码器-解码器 注意力机制
下载PDF
基于密集连接块U-Net的语义人脸图像修复 被引量:9
8
作者 杨文霞 王萌 张亮 《计算机应用》 CSCD 北大核心 2020年第12期3651-3657,共7页
针对人脸图像在待修复缺损面积较大时,现有方法的修复存在图像语义理解不合理、边界不连贯等视觉瑕疵的问题,提出基于密集连接块的U-Net结构的端到端图像修复模型,以实现对任意模板的语义人脸图像的修复。首先,采用生成对抗网络思想,生... 针对人脸图像在待修复缺损面积较大时,现有方法的修复存在图像语义理解不合理、边界不连贯等视觉瑕疵的问题,提出基于密集连接块的U-Net结构的端到端图像修复模型,以实现对任意模板的语义人脸图像的修复。首先,采用生成对抗网络思想,生成器采用密集连接块代替U-Net中的普通卷积模块,以捕捉图像中缺损部分的语义信息并确保前面层的特征被再利用;然后,使用跳连接以减少通过下采样而造成的信息损失,从而提取图像缺损区域的语义;最后,通过引入对抗损失、内容损失和局部总变分(TV)损失这三者的联合损失函数来训练生成器,确保了修复边界和周围真实图像的视觉一致,并通过Hinge损失来训练判别器。所提模型和GLC、DF、门控卷积(GC)在人脸数据集CelebA-HQ上进行了对比。实验结果表明,所提模型能有效提取人脸图像语义信息,修复结果具有自然过渡的边界和清晰的局部细节。相较性能第二的GC,所提模型对中心模板修复的结构相似性(SSIM)和峰值信噪比(PSNR)分别提高了5.68%和7.87%,Frechet Inception距离(FID)降低了7.86%;对随机模板修复的SSIM和PSNR分别提高了7.06%和4.80%,FID降低了6.85%。 展开更多
关键词 语义图像修复 生成对抗网络 密集连接块 损失函数 局部总变分 编码器-解码器
下载PDF
基于语义分割网络的路面积水与湿滑区域检测 被引量:9
9
作者 王海 蔡柏湘 +3 位作者 蔡英凤 刘泽 孙恺 陈龙 《汽车工程》 EI CSCD 北大核心 2021年第4期485-491,共7页
积水或湿滑路面的道路附着系数远小于干燥路面的附着系数,对交通的安全性和机动性都有很大的影响。通过及时获取路面状态信息而发出预警,可大大减小潜在伤害。本文中研究了基于图像的语义分割网络在积水和潮湿的路面状态识别中的应用,... 积水或湿滑路面的道路附着系数远小于干燥路面的附着系数,对交通的安全性和机动性都有很大的影响。通过及时获取路面状态信息而发出预警,可大大减小潜在伤害。本文中研究了基于图像的语义分割网络在积水和潮湿的路面状态识别中的应用,它不仅可预测未来路面状态信息,且可得到路面积水和湿滑区域的分布。该方法利用语义分割网络Res-UNet++,分割出路面的积水和湿滑区域。Res-UNet++结构包括嵌套了不同深度的编码器-解码器结构,并在网络的特征提取部分加入残差结构,从而使图像的特征更容易学习。该方法取得了平均交并比为90.07%的分割精度并克服了其它方法的缺点。 展开更多
关键词 积水与湿滑区域检测 编码器-解码器 深度学习 语义分割网络
下载PDF
融合MobileNetv2和注意力机制的轻量级人像分割算法 被引量:7
10
作者 王欣 王美丽 边党伟 《计算机工程与应用》 CSCD 北大核心 2022年第7期220-228,共9页
针对人像分割精度不高、效率不佳的问题,提出一种融合MobileNetv2和注意力机制的轻量级人像分割算法,以实现对人像半身图进行分割。在编码器-解码器的U型网络结构的基础上,通过将MobileNetv2作为骨干网络,精简上采样过程,有效地减少了... 针对人像分割精度不高、效率不佳的问题,提出一种融合MobileNetv2和注意力机制的轻量级人像分割算法,以实现对人像半身图进行分割。在编码器-解码器的U型网络结构的基础上,通过将MobileNetv2作为骨干网络,精简上采样过程,有效地减少了网络的参数量,有助于网络的迁移和训练。融合注意力机制的网络结构可更有效地学习人像特征,同时引进混合损失函数,有利于人像边缘像素点分类。该网络结构可选用人像半身图作为输入,并输出对应的图像掩膜。在Human_Matting和EG1800公开数据集上进行了实验,结果表明该算法精度分别达98.3%(Matting)、97.8%(EG1800),相较于PortraitNet预测96.3%(Matting)、95.8%(EG1800)的准确度和DeepLabv3+网络的96.8%(Matting)、96.4%(EG1800)准确度有明显提升,可以清晰地将目标人物和背景分离开。算法IOU指标可达98.6%(Matting)、98.2%(EG1800),在实验平台上分割测试集每张图片平均时间约0.015 s,可应用于轻量化场景中,为场景人像分割提供新的理论基础和研究思路。 展开更多
关键词 人像分割 MobileNetv2 编码器-解码器 注意力机制 混合损失函数
下载PDF
基于LSTM循环神经网络的税收预测 被引量:8
11
作者 文豪 陈昊 《计算机科学》 CSCD 北大核心 2020年第S02期437-443,共7页
分析历史税收数据之间的隐藏关系,利用数学模型来预测未来的税收收入是税收预测的研究重点。在此,提出了一种结合小波变换的长短期记忆(LSTM)循环神经网络的税收预测模型。在数据预处理上结合小波变换来去除税收数据中的噪声,提高模型... 分析历史税收数据之间的隐藏关系,利用数学模型来预测未来的税收收入是税收预测的研究重点。在此,提出了一种结合小波变换的长短期记忆(LSTM)循环神经网络的税收预测模型。在数据预处理上结合小波变换来去除税收数据中的噪声,提高模型的泛化能力。LSTM神经网络通过加入隐藏神经单元和门控单元能够更好地学习到历史税收数据之间的相关关系,并进一步提取有效的输入序列间的状态新息,而且解决了循环神经网络的长期依赖问题。实验结果表明,基于LSTM神经网络的编码器-解码器结构能够增强税收预测的时间步长,在中长期的税收预测中相比单步滑动窗口的LSTM神经网络模型以及基于差分微分方程的灰色模型和基于回归的自回归移动平均模型(ARIMA),在预测精度上有明显提升。 展开更多
关键词 税收预测 长短期记忆网络 小波变换 编码器-解码器
下载PDF
基于集合经验模态分解和编码器-解码器的风电功率多步预测 被引量:4
12
作者 张思毅 刘明波 +2 位作者 雷振兴 林舜江 谢敏 《南方电网技术》 CSCD 北大核心 2023年第4期16-24,共9页
准确的风电功率预测对于推动风电大规模并网具有积极意义,现有的研究多集中于超短期范围内的单步预测。为了实现更加贴近工程应用实际的风电功率多步预测,提出了一种基于集合经验模态分解和编码器-解码器的风电功率多步预测方法。首先采... 准确的风电功率预测对于推动风电大规模并网具有积极意义,现有的研究多集中于超短期范围内的单步预测。为了实现更加贴近工程应用实际的风电功率多步预测,提出了一种基于集合经验模态分解和编码器-解码器的风电功率多步预测方法。首先采用k均值聚类算法对风电机组进行聚类,然后引入集合经验模态分解算法对机组群功率序列进行分解,从而提取风电场功率的时空分布特征,通过预先搭建的基于门控循环单元的编码器-解码器预测网络实现风电功率的超前多步预测,最后将各预测值重构获得风电场总功率的预测值。利用某风电场的真实数据进行算例分析,结果表明所提算法在超前1~6 h不同应用场景下的预测性能均优于其他传统模型,预测准确度提升了6.45%~13.56%。 展开更多
关键词 风电功率预测 编码器-解码器 门控循环单元 集合经验模态分解 多步预测
下载PDF
医学图像描述综述:编码、解码及最新进展 被引量:3
13
作者 朱翌 李秀 《中国图象图形学报》 CSCD 北大核心 2023年第7期1990-2010,共21页
随着医疗成像技术的不断提升,放射科医师每天要撰写的医学报告也与日俱增。深度学习兴起后,基于深度学习的医学图像描述技术用于自动生成医学报告,取得了显著效果。本文全面整理了近年来深度医学图像描述方向的论文,包括这一领域的最新... 随着医疗成像技术的不断提升,放射科医师每天要撰写的医学报告也与日俱增。深度学习兴起后,基于深度学习的医学图像描述技术用于自动生成医学报告,取得了显著效果。本文全面整理了近年来深度医学图像描述方向的论文,包括这一领域的最新方法、数据集和评价指标,分析了它们各自的优劣,并以模型结构为线索予以介绍,是国内首篇针对医疗图像描述任务的综述。现今的深度医疗图像描述技术主要以编码器—解码器结构为基础进行拓展,包括但不局限于加入检索方法、模板匹配方法、注意力机制、强化学习和知识图谱等方法。检索和模板匹配方法虽然简单,但由于医学报告的特殊性仍在本任务上有不错的效果;注意力机制使模型产生报告时能关注图像和文本的某一部分,已经被几乎所有主流模型所采用;强化学习方法突破了医疗图像描述任务中梯度下降训练法与离散的语言生成评价指标不匹配的瓶颈;知识图谱方法则融合了人类医生对于疾病的先验知识,有效提高了生成报告的临床准确性。此外,Transformer等新型结构也正越来越多地取代循环神经网络(recurrent neural network,RNN)甚至卷积神经网络(convolutional neural network,CNN)的位置成为网络主干。本文最后讨论了目前深度医疗图像描述仍需解决的问题以及未来的研究方向,希望能推动深度医疗图像描述技术真正落地。 展开更多
关键词 深度学习(DL) 医学图像描述 自动医学报告生成 编码器解码器 图像字幕
原文传递
基于神经网络的智能外语翻译机器人语义纠错系统 被引量:3
14
作者 李星 《自动化与仪器仪表》 2023年第1期246-250,共5页
针对传统语法错误纠正系统存在并行化程度低的问题,提出以神经语法错误纠正基线模型为基础模型,在基于循环神经网络编码器-解码器基础上对其进行改进,并构建一个基于自注意力机制的语法错误纠正模型—Transformer,通过此模型提升语法纠... 针对传统语法错误纠正系统存在并行化程度低的问题,提出以神经语法错误纠正基线模型为基础模型,在基于循环神经网络编码器-解码器基础上对其进行改进,并构建一个基于自注意力机制的语法错误纠正模型—Transformer,通过此模型提升语法纠正效果。实验结果表明,Transformer模型在对冠词、名词、介词、形容词等语法错误进行纠错时,其纠错召回率明显高于传统的MLConv模型,且本模型的计算并行化程度更高。由此说明,基于自注意力机制的语法错误纠正模型性能更为优越,构建的Transformer系统在语法错误纠正中具有可行性。 展开更多
关键词 语法错误纠正 循环神经网络 编码器-解码器 Transformer系统
原文传递
UConvTrans:全局和局部信息交互的双分支心脏图像分割 被引量:3
15
作者 李擎 皇甫玉彬 +3 位作者 李江昀 杨志方 陈鹏 王子涵 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第5期570-581,共12页
心脏核磁共振成像(MRI)具有噪声多、背景和目标区域相似度高、右心室形状不固定、呈月牙形或扁圆形等特点,虽然基于卷积神经网络的U型结构在医学图像分割中表现出色,但由于卷积本身的局部运算特性,提取全局信息特征能力有限,所以很难提... 心脏核磁共振成像(MRI)具有噪声多、背景和目标区域相似度高、右心室形状不固定、呈月牙形或扁圆形等特点,虽然基于卷积神经网络的U型结构在医学图像分割中表现出色,但由于卷积本身的局部运算特性,提取全局信息特征能力有限,所以很难提升在心脏MRI上的分割精度.针对上述问题,提出一种全局和局部信息交互的双分支网络模型(UConvTrans).首先,利用卷积分支和Transformer分支提取局部特征和建模全局上下文信息,能够保留细节信息并抑制心脏MRI中噪声和背景区域的干扰.其次,设计了融合卷积网络和Transformer结构的模块,该模块将二者提取的特征交互融合,增强了模型表达能力,改善了右心室的分割精度,而且避免了Transformer结构在大规模数据集上预训练,可以灵活调节网络结构.此外,UConvTrans能有效地平衡精度和效率,在MICCAI 2017 ACDC数据集上进行验证,该模型在模型参数量、计算量仅为U-Net的10%、8%的情况下,平均Dice系数比U-Net提高了1.13%.最终,在其官方测试集上实现了右心室92.42%、心肌91.64%、左心室95.06%的Dice系数,在心肌及左心室区域取得了到目前为止最好的结果. 展开更多
关键词 医学图像分割 心脏核磁共振图像 卷积神经网络 Transformer模型 编码器-解码器
下载PDF
基于图注意力网络与双阶注意力机制的径流预报模型 被引量:6
16
作者 胡鹤轩 隋华超 +3 位作者 胡强 张晔 胡震云 马能武 《计算机应用》 CSCD 北大核心 2022年第5期1607-1615,共9页
为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础... 为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础,引入图神经网络提取流域站点的拓扑结构并生成特征向量;其次,针对水文时间序列数据的特点,建立了基于双阶注意力机制的径流预报模型对流域径流量进行预测,并通过基于注意力系数热点图的模型评估方法验证所提模型的可靠性与透明度。在屯溪流域数据集上,将所提模型与图卷积神经网络(GCN)和长短期记忆网络(LSTM)在各个预测步长下进行比较,实验结果表明,所提模型的纳什效率系数分别平均提高了3.7%和4.9%,验证了GAT-DALSTM径流预报模型的准确性。从水文与应用角度对注意力系数热点图进行分析,验证了模型的可靠性与实用性。所提模型能为提高流域径流量的预测精度与模型透明度提供技术支撑。 展开更多
关键词 图神经网络 注意力机制 编码器-解码器 长短期记忆网络 时间序列预测 水文预报
下载PDF
基于多尺度特征模糊卷积神经网络的遥感图像分割 被引量:1
17
作者 马翔悦 徐金东 倪梦莹 《山东大学学报(工学版)》 CAS CSCD 北大核心 2024年第3期44-54,共11页
为解决高分辨率遥感图像“同谱异物、同物异谱”的不确定性以及大量空间信息利用率低的问题,提出一种基于多尺度特征的模糊卷积神经网络模型。该模型在长跳跃连接部分加入模糊学习模块去除噪声特征,缓解类别间的不确定性;利用多孔空间... 为解决高分辨率遥感图像“同谱异物、同物异谱”的不确定性以及大量空间信息利用率低的问题,提出一种基于多尺度特征的模糊卷积神经网络模型。该模型在长跳跃连接部分加入模糊学习模块去除噪声特征,缓解类别间的不确定性;利用多孔空间金字塔池化融合多尺度特征,提取完备的空间上下文信息,提升分割性能。试验结果表明,该模型在Potsdam数据集和Vaihingen数据集上的整体准确度分别达到92.65%和93.19%,明显优于现有流行的深度学习模型,能够显著提升高分辨率遥感图像的语义分割性能。 展开更多
关键词 模糊学习 多孔空间金字塔池化 多尺度特征 编码器-解码器 卷积神经网络
原文传递
结合密集注意力的自适应特征融合图像去雾网络
18
作者 王燕 他雪 卢鹏屹 《计算机系统应用》 2024年第2期72-82,共11页
目前,大多数图像去雾算法忽视图像的局部细节信息,无法充分利用不同层次的特征,导致恢复的无雾图像仍存在颜色失真、对比度下降和雾霾残留现象,针对这一问题,提出结合密集注意力的自适应特征融合图像去雾网络.该网络以编码器-解码器结... 目前,大多数图像去雾算法忽视图像的局部细节信息,无法充分利用不同层次的特征,导致恢复的无雾图像仍存在颜色失真、对比度下降和雾霾残留现象,针对这一问题,提出结合密集注意力的自适应特征融合图像去雾网络.该网络以编码器-解码器结构为基本框架,中间嵌入特征增强部分与特征融合部分,通过在特征增强部分叠加由密集残差网络与CS联合注意模块构成的密集特征注意块,使网络可以关注图像的局部细节信息,同时增强特征的重复利用,有效防止梯度消失;在特征融合部分构建自适应特征融合模块融合低级与高级特征,防止因网络加深而造成浅层特征退化.实验结果表明,所提算法在合成有雾图像数据集和真实有雾图像数据集上均表现优异,在SOTS室内合成数据集上的峰值信噪比和结构相似性分别达到了35.81 dB和0.9889,在真实图像数据集O-HAZE上的峰值信噪比和结构相似性分别达到了22.75 dB和0.7788,有效解决了颜色失真、对比度下降和雾霾残留等问题. 展开更多
关键词 图像去雾 深度学习 编码器-解码器 密集连接 注意力机制 特征融合
下载PDF
基于特征注意力的快速非均匀雾图像去雾算法 被引量:2
19
作者 吴正平 程洁莹 +1 位作者 雷帮军 赵俊臣 《国外电子测量技术》 北大核心 2023年第9期9-18,共10页
针对现有单幅图像去雾算法在雾度分布不均匀情况下去雾效果的局限性,以及较高的时间成本等问题。提出了一种以编码器-解码器结构为基本框架,融合多尺度卷积与特征注意力的快速图像去雾算法。首先,基于对性能和内存存储的权衡,使用了一... 针对现有单幅图像去雾算法在雾度分布不均匀情况下去雾效果的局限性,以及较高的时间成本等问题。提出了一种以编码器-解码器结构为基本框架,融合多尺度卷积与特征注意力的快速图像去雾算法。首先,基于对性能和内存存储的权衡,使用了一种轻量级的编码器-解码器结构,以保证较低的时间成本;其次,考虑到在不均匀雾度分布的场景中,雾化的区域可能超过卷积核的大小,提出了一种多尺度卷积结构,在特征提取阶段首先使用1×1、3×3、5×5、7×7的并行多尺度卷积提取特征,以增大感受野保留输入图像的更多细节;为了验证算法的有效性,在3种数据集上将本文提出的算法与目前流行的算法进行对比实验。算法在真实的非均匀雾度分布场景NH-HAZE 2数据集中,3项评价指标峰值信噪比(PSNR)、结构相似性(SSIM)、单张分辨率为1600×1200的图片处理时间分别为20.50dB、0.84、0.0038 s,相对于DMPHN模型均有所提高,3项指标皆处于较高水平。实验结果表明,算法有效地解决了在雾度分布不均匀情况下去雾效果不理想的问题,降低了时间成本,同时复原图像在颜色、亮度方面具有更好的表现。 展开更多
关键词 非均匀雾图像去雾 编码器-解码器 特征注意力 多尺度卷积 轻量级
下载PDF
结合注意力机制和编码器—解码器架构的化学结构识别方法
20
作者 曾水玲 李昭贤 +2 位作者 张嘉雄 丁龙飞 赵才荣 《中国图象图形学报》 CSCD 北大核心 2024年第7期1960-1969,共10页
目的 化学结构识别是化学和计算机视觉领域的一个重要问题,传统光学化学结构识别技术在复杂化学结构识别任务中易发生信息丢失或误识别的现象,同时又因为化学物质的结构多样性常导致其无法解析,识别效果不佳。而基于深度学习的模型通常... 目的 化学结构识别是化学和计算机视觉领域的一个重要问题,传统光学化学结构识别技术在复杂化学结构识别任务中易发生信息丢失或误识别的现象,同时又因为化学物质的结构多样性常导致其无法解析,识别效果不佳。而基于深度学习的模型通常具有网络结构复杂度高、上下文信息易丢失和识别率低的问题。为此,提出一种结合注意力机制和编码器—解码器架构的化学结构识别方法。方法 首先,使用改进的ResNet50(residual network)作为特征提取器抓取表征信息;其次,使用BLSTM(bi-directional long-short term memory)作为行编码器为ResNet50提取的表征信息加强空间信息;最后,使用去填充模块和基于覆盖注意力机制的LSTM(long short-term memory)网络作为模型解码器,对化学结构图像进行解码,将编码结果解码为SMILES(simplified molecular input line entry system)序列。结果 在Indigo、ChemDraw、CLEF(Conference and Labs of the Evaluation Forum)、JPO(Japanese Patent Office)、UOB(University of Birmingham)、USPTO(United States Patent and Trademark Office)、Staker、ACS(American Chemistry Society)、CASIA-CSDB(Institute of Automation of Chinese Academy of Sciences—Chemical Structure Database)和Mini CASIA-CSDB数据集上,所提方法识别准确率分别为71.1%、70.21%、45.8%、30.3%、53.02%、58.21%、43.39%、46.3%、84.42%和85.78%,高于SwimOCSR、Image2Mol和ChemPix模型得分。结论 与其他模型相比,本文方法通过少量训练集能够获得较高的识别准确率。 展开更多
关键词 化学结构识别 编码器解码器 注意力机制 残差网络 SMILES(simplified molecular input line entry system)
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部