目的为协调水印算法不可见性与鲁棒性之间的矛盾,提高水印算法抵抗几何攻击的能力,提出一种图像块的不可见性与鲁棒性均衡水印算法。方法将宿主图像分成互不重叠的图像块,利用人类视觉系统的掩蔽特性对每个图像块的纹理特征和边缘特征...目的为协调水印算法不可见性与鲁棒性之间的矛盾,提高水印算法抵抗几何攻击的能力,提出一种图像块的不可见性与鲁棒性均衡水印算法。方法将宿主图像分成互不重叠的图像块,利用人类视觉系统的掩蔽特性对每个图像块的纹理特征和边缘特征进行分析,选择掩蔽性好的图像块作为嵌入子块。对嵌入子块作2级离散小波变换,将其低频子带进行奇异值分解,通过修改U矩阵第1列元素间的大小关系嵌入Arnold置乱后的水印信息。在水印提取前,对几何失真含水印图像利用图像尺度不变特征变换(SIFT)特征点的坐标关系和尺度特征进行几何校正,恢复水印的同步性。结果对标准灰度图像进行实验,含水印图像的峰值信噪比都可以达到44 d B以上。对含水印图像进行常规攻击和几何攻击,提取出的水印图像与原始水印图像的归一化互相关系数大部分都能达到0.99以上,说明该算法不仅具有良好的不可见性,对常见攻击和几何攻击都具有较强的鲁棒性。结论选择掩蔽性好的图像块作为水印嵌入位置能够充分保证水印算法的不可见性,特别是水印提取前利用SIFT特征点具有旋转、缩放和平移不变性对几何失真含水印图像实现有效校正,提高了含水印图像抵抗几何攻击的能力,较好地协调水印算法不可见性与鲁棒性之间的矛盾。展开更多
图像/视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响。因此,作为计算机视觉领域的一项重要任务,图像/视频质量评价应运而生。...图像/视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响。因此,作为计算机视觉领域的一项重要任务,图像/视频质量评价应运而生。其目的在于通过构建计算机数学模型来衡量图像/视频中的失真信息以判断其质量的好坏,达到自动预测质量的效果。在城市生活、交通监控以及多媒体直播等多个场景中具有广泛的应用前景。图像/视频质量评价研究取得了长足的发展,为计算机视觉领域中其他任务提供了一定的便利。本文在广泛调研前人研究的基础上,回顾了整个图像/视频质量评价领域的发展历程,分别列举了传统方法和深度学习方法中一些具有里程碑意义的算法和影响力较大的算法,然后从全参考、半参考和无参考3个方面分别对图像/视频质量评价领域的一些文献进行了综述,具体涉及的方法包含基于结构信息、基于人类视觉系统和基于自然图像统计的方法等;在LIVE(laboratory for image&video engineering)、CSIQ(categorical subjective image quality database)、TID2013等公开数据集的基础上,基于SROCC(Spearman rank order correlation coefficient)、PLCC(Pearson linear correlation coefficient)等评价指标,对一些具有代表性算法的性能进行了分析;最后总结当前质量评价领域仍存在的一些挑战与问题,并对其进行了展望。本文旨在为质量评价领域的研究人员提供一个较全面的参考。展开更多
文摘目的为协调水印算法不可见性与鲁棒性之间的矛盾,提高水印算法抵抗几何攻击的能力,提出一种图像块的不可见性与鲁棒性均衡水印算法。方法将宿主图像分成互不重叠的图像块,利用人类视觉系统的掩蔽特性对每个图像块的纹理特征和边缘特征进行分析,选择掩蔽性好的图像块作为嵌入子块。对嵌入子块作2级离散小波变换,将其低频子带进行奇异值分解,通过修改U矩阵第1列元素间的大小关系嵌入Arnold置乱后的水印信息。在水印提取前,对几何失真含水印图像利用图像尺度不变特征变换(SIFT)特征点的坐标关系和尺度特征进行几何校正,恢复水印的同步性。结果对标准灰度图像进行实验,含水印图像的峰值信噪比都可以达到44 d B以上。对含水印图像进行常规攻击和几何攻击,提取出的水印图像与原始水印图像的归一化互相关系数大部分都能达到0.99以上,说明该算法不仅具有良好的不可见性,对常见攻击和几何攻击都具有较强的鲁棒性。结论选择掩蔽性好的图像块作为水印嵌入位置能够充分保证水印算法的不可见性,特别是水印提取前利用SIFT特征点具有旋转、缩放和平移不变性对几何失真含水印图像实现有效校正,提高了含水印图像抵抗几何攻击的能力,较好地协调水印算法不可见性与鲁棒性之间的矛盾。
文摘图像/视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响。因此,作为计算机视觉领域的一项重要任务,图像/视频质量评价应运而生。其目的在于通过构建计算机数学模型来衡量图像/视频中的失真信息以判断其质量的好坏,达到自动预测质量的效果。在城市生活、交通监控以及多媒体直播等多个场景中具有广泛的应用前景。图像/视频质量评价研究取得了长足的发展,为计算机视觉领域中其他任务提供了一定的便利。本文在广泛调研前人研究的基础上,回顾了整个图像/视频质量评价领域的发展历程,分别列举了传统方法和深度学习方法中一些具有里程碑意义的算法和影响力较大的算法,然后从全参考、半参考和无参考3个方面分别对图像/视频质量评价领域的一些文献进行了综述,具体涉及的方法包含基于结构信息、基于人类视觉系统和基于自然图像统计的方法等;在LIVE(laboratory for image&video engineering)、CSIQ(categorical subjective image quality database)、TID2013等公开数据集的基础上,基于SROCC(Spearman rank order correlation coefficient)、PLCC(Pearson linear correlation coefficient)等评价指标,对一些具有代表性算法的性能进行了分析;最后总结当前质量评价领域仍存在的一些挑战与问题,并对其进行了展望。本文旨在为质量评价领域的研究人员提供一个较全面的参考。