Understanding the dynamics of water renewal in a reservoir is essential when the transport and fate of dissolved substances are evaluated.A three-dimensional hydrodynamic model was implemented to compute average resid...Understanding the dynamics of water renewal in a reservoir is essential when the transport and fate of dissolved substances are evaluated.A three-dimensional hydrodynamic model was implemented to compute average residence time and water age in Dahuofang Reservoir in China.The model was verified for a one-year time period in 2006.A simulation reproduced intra-annual variation of mixing represented by the fall/winter mixing and the spring/summer stratification.The simulated variation of vertical thermal structures also matched observation.The spatially varying average residence times and age distribution were investigated through a series of numerical experiments using a passively dissolved and conservative tracer as a surrogate.Residence time estimations yield a broad range of values depending on the position.The average residence time for a tracer placed at the head of the reservoir under high-,mean-,and low flow conditions was found to be about 125,236 and 521 days,respectively.The age simulation reveals that the age distribution is a function of the freshwater discharge.In the vertical direction,the age of the surface layers is larger than that of the bottom layers and the age difference between the surface and bottom layers decreases further downstream.The density-induced circulation plays an important role in the circulation in the reservoir,and can generate vertical age distribution in the reservoir.These findings provide useful information for understanding the transport process in Dahuofang Reservoir that can be used to assist the water quality management of the reservoir.展开更多
The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the ...The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the structure defects (e.g. stray grain) of unidirectionally solidified turbine blade. The results show that the developed model is reliable and has the following abilities: 1) reduce the misorientation caused by the orthogonal mesh used in simulation; 2) well reproduce the growth competition among the different-preferential-direction grains with less than 10% relative error; 3) predict the structure defect of stray grain with the accuracy over 80%; 4) optimize the grain selector to better obtain a single crystal avoiding the multigrain defect; 5) simulate the structure evolution (nucleation and growth) of the directional and single crystal turbine blade.展开更多
基金supported by the National Science and Technology Major Special Project of China on Water Pollution Control and Management (Grant No.2009ZX07528-006-01)the National Natural Science Foundation of China (Grant No. 50839001)
文摘Understanding the dynamics of water renewal in a reservoir is essential when the transport and fate of dissolved substances are evaluated.A three-dimensional hydrodynamic model was implemented to compute average residence time and water age in Dahuofang Reservoir in China.The model was verified for a one-year time period in 2006.A simulation reproduced intra-annual variation of mixing represented by the fall/winter mixing and the spring/summer stratification.The simulated variation of vertical thermal structures also matched observation.The spatially varying average residence times and age distribution were investigated through a series of numerical experiments using a passively dissolved and conservative tracer as a surrogate.Residence time estimations yield a broad range of values depending on the position.The average residence time for a tracer placed at the head of the reservoir under high-,mean-,and low flow conditions was found to be about 125,236 and 521 days,respectively.The age simulation reveals that the age distribution is a function of the freshwater discharge.In the vertical direction,the age of the surface layers is larger than that of the bottom layers and the age difference between the surface and bottom layers decreases further downstream.The density-induced circulation plays an important role in the circulation in the reservoir,and can generate vertical age distribution in the reservoir.These findings provide useful information for understanding the transport process in Dahuofang Reservoir that can be used to assist the water quality management of the reservoir.
基金Project(ICAST 11305054) supported by the NEDO of Japan Project(20052176) supported by the Natural Science Foundation of Liaoning Province, China Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the structure defects (e.g. stray grain) of unidirectionally solidified turbine blade. The results show that the developed model is reliable and has the following abilities: 1) reduce the misorientation caused by the orthogonal mesh used in simulation; 2) well reproduce the growth competition among the different-preferential-direction grains with less than 10% relative error; 3) predict the structure defect of stray grain with the accuracy over 80%; 4) optimize the grain selector to better obtain a single crystal avoiding the multigrain defect; 5) simulate the structure evolution (nucleation and growth) of the directional and single crystal turbine blade.