Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegrada...Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegradability,and sustainability.For energy consumption reduction,CNFs were extracted from raw jute fibers,which were not pretreated in a hot alkali or acid solution,by TEMPOmediated oxidation.Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites;Fourier transform infrared spectroscopy,transmission electron microscopy,and fieldemission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs.The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.展开更多
基金supported by the National Nature Science Foundation of China(Nos.11505272,51773221,U1732123)Youth Innovation Promotion Association CAS(No.2017308)
文摘Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegradability,and sustainability.For energy consumption reduction,CNFs were extracted from raw jute fibers,which were not pretreated in a hot alkali or acid solution,by TEMPOmediated oxidation.Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites;Fourier transform infrared spectroscopy,transmission electron microscopy,and fieldemission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs.The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.