期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高斯隶属度优化的超分辨率随机森林学习算法 被引量:2
1
作者 周文谊 王吉源 《计算机工程与应用》 CSCD 北大核心 2016年第23期208-212,共5页
随机森林学习算法是一种有效的单图像超分辨率方法,然而其决策函数是确定的二值函数,这对某些图像块的确定性划分并不是最优的选择。为提升单图像超分辨率性能,采用高斯隶属度函数构建随机森林各决策节点的决策函数,将决策函数的输出值... 随机森林学习算法是一种有效的单图像超分辨率方法,然而其决策函数是确定的二值函数,这对某些图像块的确定性划分并不是最优的选择。为提升单图像超分辨率性能,采用高斯隶属度函数构建随机森林各决策节点的决策函数,将决策函数的输出值由0和1的确定值转换到0-1之间的概率值,并在叶节点上依据数据划分路径上各决策节点概率的乘积进行预测,依据最小经验冒险准则学习决策参数,使随机森林能更好学习不同的样本数据。实验结果表明,与随机森林学习等目前主流单图像超分辨率方法相比,该方法可以提升超分辨率图像的峰值信噪比,同时运算效率与传统随机森林学习算法相当。 展开更多
关键词 随机森林学习 单图像超分辨率 决策函数 高斯隶属度函数 经验冒险
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部