This article presents an application of generalized pattern search (PS) algorithm to solve economic load dispatch (ELD) problems with convex and non-convex fuel cost objective functions. Main objective of ELI) is...This article presents an application of generalized pattern search (PS) algorithm to solve economic load dispatch (ELD) problems with convex and non-convex fuel cost objective functions. Main objective of ELI) is to determine the most economic generating dispatch required to satisfy the predicted load demands including line losses. Relaxing various equality and inequality constraints are considered. The unit operation minhnum/maximum constraints, effects of valve-point and line losses are considered for the practical applications. Several case studies were tested and verified, which indicate an improvement in total fuel cost savings. The robustness of the proposed PS method have been assessed and investigated through intensive comparisons with reported results in recent researches. The results are very encouraging and suggesting that PS may be very useful tool in solving power system ELD problems.展开更多
介绍以目标函数为抗原,以问题解为抗体,利用进化策略进行群体更新的免疫遗传算法。讨论环境经济负荷调度多目标函数优化问题,给出利用免疫遗传算法解决这一问题的主要步骤。利用一个含有5个电力生产单元的燃煤电力系统模型验证了该算法...介绍以目标函数为抗原,以问题解为抗体,利用进化策略进行群体更新的免疫遗传算法。讨论环境经济负荷调度多目标函数优化问题,给出利用免疫遗传算法解决这一问题的主要步骤。利用一个含有5个电力生产单元的燃煤电力系统模型验证了该算法的可行性和有效性。并与遗传算法和Hop fie ld神经网络进行比较分析,证实了该算法解决该类问题的优化性和快速收敛性。展开更多
电力经济与环境负荷调度(Environmental/Economic Power Dispatch,EED)已成为当前经济与环境和谐发展下电力系统需考虑的问题。针对EED问题中以发电单元实际发电量作为决策变量的非线性燃料成本函数和微粒排放函数,引入模糊集方法构造...电力经济与环境负荷调度(Environmental/Economic Power Dispatch,EED)已成为当前经济与环境和谐发展下电力系统需考虑的问题。针对EED问题中以发电单元实际发电量作为决策变量的非线性燃料成本函数和微粒排放函数,引入模糊集方法构造发电单元实际发电量的模糊变量,以贴近电力系统中发电单元发电量的特点,使得EED问题的模糊化多目标模型更贴近实际,并采用一种改进遗传算法来找出EED问题模糊化多目标模型的优化方案。最后采用一个3发电单元的测试系统进行仿真并与其他方法进行对比,结果证明采用本文模型和方法得到的系统负荷调度方案在系统经济成本与微粒排放量上有明显的改善。展开更多
文摘This article presents an application of generalized pattern search (PS) algorithm to solve economic load dispatch (ELD) problems with convex and non-convex fuel cost objective functions. Main objective of ELI) is to determine the most economic generating dispatch required to satisfy the predicted load demands including line losses. Relaxing various equality and inequality constraints are considered. The unit operation minhnum/maximum constraints, effects of valve-point and line losses are considered for the practical applications. Several case studies were tested and verified, which indicate an improvement in total fuel cost savings. The robustness of the proposed PS method have been assessed and investigated through intensive comparisons with reported results in recent researches. The results are very encouraging and suggesting that PS may be very useful tool in solving power system ELD problems.
文摘介绍以目标函数为抗原,以问题解为抗体,利用进化策略进行群体更新的免疫遗传算法。讨论环境经济负荷调度多目标函数优化问题,给出利用免疫遗传算法解决这一问题的主要步骤。利用一个含有5个电力生产单元的燃煤电力系统模型验证了该算法的可行性和有效性。并与遗传算法和Hop fie ld神经网络进行比较分析,证实了该算法解决该类问题的优化性和快速收敛性。
文摘电力经济与环境负荷调度(Environmental/Economic Power Dispatch,EED)已成为当前经济与环境和谐发展下电力系统需考虑的问题。针对EED问题中以发电单元实际发电量作为决策变量的非线性燃料成本函数和微粒排放函数,引入模糊集方法构造发电单元实际发电量的模糊变量,以贴近电力系统中发电单元发电量的特点,使得EED问题的模糊化多目标模型更贴近实际,并采用一种改进遗传算法来找出EED问题模糊化多目标模型的优化方案。最后采用一个3发电单元的测试系统进行仿真并与其他方法进行对比,结果证明采用本文模型和方法得到的系统负荷调度方案在系统经济成本与微粒排放量上有明显的改善。