期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于DarkNet-53和YOLOv3的水果图像识别 被引量:22
1
作者 王辉 张帆 +1 位作者 刘晓凤 李潜 《东北师大学报(自然科学版)》 CAS 北大核心 2020年第4期60-65,共6页
为实现复杂背景下准确、快速地识别多种水果,提出了基于改进DarkNet-53卷积神经网络的水果分类识别模型.该模型在DarkNet-53网络模型基础上,用组归一化方法替换原有的批量归一化方法,改进模型结构、优化参数.在此基础上,引入YOLOv3算法... 为实现复杂背景下准确、快速地识别多种水果,提出了基于改进DarkNet-53卷积神经网络的水果分类识别模型.该模型在DarkNet-53网络模型基础上,用组归一化方法替换原有的批量归一化方法,改进模型结构、优化参数.在此基础上,引入YOLOv3算法对图像全局信息进行目标预测,构建水果目标检测模型.从建立的水果图像库中随机抽取样本作为训练集和测试集,测试该方法性能.结果表明:所构建模型能够有效提取水果图像的不同层特征,与原模型相比不依赖于批量大小,准确率达到95.6%;使用改进的DarkNet-53作为主干网络的水果目标检测模型,平均识别精度达到85.91%. 展开更多
关键词 图像识别 卷积神经网络 DarkNet-53 归一化 YOLOv3
下载PDF
GNNI U-net:基于组归一化与最近邻插值的MRI左心室轮廓精准分割网络 被引量:10
2
作者 高强 高敬阳 赵地 《计算机科学》 CSCD 北大核心 2020年第8期213-220,共8页
心血管疾病已成为威胁人类健康的头号杀手。目前,医生们通过左心室MRI成像技术对左心室轮廓进行手工标注来计算心脏的各项功能参数,以监测和预防心血管疾病,但此方法的标注工作量大、耗时且繁琐。目前,深度学习在许多医疗影像分割领域... 心血管疾病已成为威胁人类健康的头号杀手。目前,医生们通过左心室MRI成像技术对左心室轮廓进行手工标注来计算心脏的各项功能参数,以监测和预防心血管疾病,但此方法的标注工作量大、耗时且繁琐。目前,深度学习在许多医疗影像分割领域取得了显著的成功,但在左心室轮廓分割领域仍有提升的空间。文中提出了一种基于组归一化与最近邻插值的MRI左心室轮廓精确分割网络——GNNI U-net(U-net with Group Normalization and Nearest Interpolation),该网络利用组归一化方法构建了能够快速、准确提取特征信息的卷积模块,基于最近邻插值法构建了用于特征信息还原的上采样模块。在Sunnybrook与LVSC两个左心室分割数据集上采用了中心裁减ROI提取的预处理方法,并对GNNI U-net进行了充分的对比实验。所提网络在Sunnybrook数据集上获得了Dice系数为0.937以及Jaccard系数为0.893的精度。在LVSC数据集上获得了Dice系数为0.957以及Jaccard系数为0.921的精度。GNNI U-net在左心室轮廓分割领域取得了比现有卷积网络分割方法更高的Dice系数精度。最后,进一步讨论并验证了组归一化操作卷积模块能够加速网络的收敛并提高分割精度;采用最近邻插值法的上采样模块对左心室轮廓这类较小目标的分割效果更好,能够在一定程度上加速网络的收敛。 展开更多
关键词 GNNI U-net 归一化 最近邻插值 左心室分割
下载PDF
基于卷积神经网络的轻量级水稻叶片病害识别模型
3
作者 陆煜 俞经虎 +1 位作者 朱行飞 张不凡 《江苏农业学报》 CSCD 北大核心 2024年第2期312-319,共8页
水稻病害一直是影响水稻产量的重要因素之一,为了快速、准确地检测水稻病害,本研究提出了一种基于卷积神经网络的轻量级水稻叶片病害识别模型。首先,从参数量的角度对注意力机制进行改进,得到轻量级注意力机制模块,对水稻叶片病害特征... 水稻病害一直是影响水稻产量的重要因素之一,为了快速、准确地检测水稻病害,本研究提出了一种基于卷积神经网络的轻量级水稻叶片病害识别模型。首先,从参数量的角度对注意力机制进行改进,得到轻量级注意力机制模块,对水稻叶片病害特征图中的潜在注意力信息进行深度挖掘;其次,使用深度可分离卷积代替部分标准卷积,进一步降低模型的参数量;最后,为了提高模型的泛化能力,让模型学习过程更快、更稳定,采用了自带内部归一化属性的扩展型指数线性单元函数(SELU)与外部组归一化模块相结合的方法。通过在公共数据集中进行验证,本研究构建模型的平均精度最高(0.990 0),模型在参数量和平均单次迭代时间方面也有一定优势,与其他模型相比,具有相对较好的性能。 展开更多
关键词 水稻病害 归一化 激活函数 深度可分离卷积 注意力机制
下载PDF
基于改进知识一致性注意力的图像修复算法 被引量:2
4
作者 李海燕 尹浩林 +1 位作者 钟杏苑 张榆锋 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期110-117,共8页
为有效解决修复大面积不规则洞孔出现的纹理模糊、结构失真等问题,提出了基于改进知识一致性注意力机制图像修复算法.首先使用部分卷积对待修复图像进行处理,随后将处理的特征图送入包含混合空洞卷积(HDC)与改进知识一致性注意力机制(K... 为有效解决修复大面积不规则洞孔出现的纹理模糊、结构失真等问题,提出了基于改进知识一致性注意力机制图像修复算法.首先使用部分卷积对待修复图像进行处理,随后将处理的特征图送入包含混合空洞卷积(HDC)与改进知识一致性注意力机制(KCA)的特征推理模块.推理完成后将输出特征图输入至部分卷积与特征推理模块进行循环推理,逐步提升网络的修复能力,循环完成后对输出图像进行特征合并.最后将合并特征图进行去残差瓶颈层以增强修复图像的结构完整性.提出模型使用组归一化方式(GN)加快损失函数收敛速度.在公开数据集上验证提出算法的性能,主客观实验结果表明:提出算法能有效修复大面积连续不规则区域,能够较好地避免修复失真,其峰值信噪比和结构相似度及运算速度优于对比算法. 展开更多
关键词 图像修复 混合空洞卷积 不规则洞孔 注意力机制 归一化
原文传递
基于多任务深度学习的快速人像自动抠图 被引量:6
5
作者 许征波 杨煜俊 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2020年第8期740-745,752,共7页
针对大多数人像抠图存在时效性低、需要人工标注三分图和依赖颜色作为主要依据而导致精度难提高的问题,提出一种基于多任务学习的神经网络的快速人像自动抠图算法。该方法首先对图像的三分图进行学习预测,并将得到的信息反馈至网络后去... 针对大多数人像抠图存在时效性低、需要人工标注三分图和依赖颜色作为主要依据而导致精度难提高的问题,提出一种基于多任务学习的神经网络的快速人像自动抠图算法。该方法首先对图像的三分图进行学习预测,并将得到的信息反馈至网络后去学习预测图像的α值,网络结构采用编码器-解码器的方式,编码器部分使用深度可分离残差卷积做特征提取,和多组空洞卷积并联组合使得网络拥有足够的感受野;解码部分使用双线性加性上采样使特征图逐步恢复至原图大小,另外使用跳跃连接层将编码和解码部分相连接;使用公开数据库作为测试集,与Deeplab加文献[3]算法和DAPM算法进行对比,实验结果表明在运行时间、SAD、MSE和Gradient评价指标上优于对比算法。 展开更多
关键词 人像抠图 可分离卷积 空洞卷积 双线性加性 归一化
原文传递
基于深度可分离卷积和宽残差网络的医学影像超分辨率重建 被引量:6
6
作者 高媛 王晓晨 +1 位作者 秦品乐 王丽芳 《计算机应用》 CSCD 北大核心 2019年第9期2731-2737,共7页
为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更... 为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更容易地传播到高层,提高了医学影像超分辨率的重建质量;然后,采用组归一化的方法训练网络,将卷积层的通道维度划分为组,在每个组内计算归一化的均值和方差,使得网络训练过程更快地收敛,解决了深度可分离卷积扩宽通道数导致网络训练难度增加的问题,同时网络表现出更好的性能。实验结果表明,对比传统的最近邻插值、双三次插值超分辨率算法,以及基于稀疏表达的超分辨率算法,所提算法重建出的医学影像纹理细节更加丰富、视觉效果更加逼真。对比基于卷积神经网络的超分辨率算法,基于宽残差超分辨率神经网络算法和生成对抗网络超分辨率算法,所提算法在峰值信噪比(PSNR)和结构相似性(SSIM)上有显著的提升。 展开更多
关键词 超分辨率 宽残差 深度可分离卷积 归一化 残差块
下载PDF
基于改进YOLOv4的道路病害实时检测模型
7
作者 黄艳国 李罗 +1 位作者 曾东红 王丽宁 《现代计算机》 2024年第8期1-8,37,共9页
针对道路中存在多类、尺度不一的病害类型导致其检测精度低、检测速率慢以及漏检等问题,提出一种基于改进YOLOv4的道路病害实时检测模型。在网络模型中,首先优化卷积块中的归一化方式,采用组归一化来代替批量归一化,避免因BatchSize过... 针对道路中存在多类、尺度不一的病害类型导致其检测精度低、检测速率慢以及漏检等问题,提出一种基于改进YOLOv4的道路病害实时检测模型。在网络模型中,首先优化卷积块中的归一化方式,采用组归一化来代替批量归一化,避免因BatchSize过小而导致检测效果不佳的情况发生;同时对卷积块进行优化,使用深度可分离卷积块来替代原有卷积块,量化网络模型的参数计算量,提高检测速度;最后在检测头中使用自适应非极大值抑制算法,解决非极大值抑制固定阈值引起的小目标漏检和误检问题。实验结果表明,改进后的YOLOv4算法在道路病害检测的检测精度mAP值高达88.64%,检测速度可达37.90帧/秒;与原YOLOv4算法相比,改进后的算法在检测精度上提高了2.89个百分点,同比检测速度增加了10.60帧/秒,且有效解决了漏检现象,进一步提高了在道路病害检测中的实用性。 展开更多
关键词 道路病害检测 YOLOv4 归一化 深度可分离卷积 自适应非极大值抑制
下载PDF
基于Faster-RCNN的绝缘子缺陷检测
8
作者 王子旭 张红旗 包曼 《山西电力》 2024年第4期17-21,共5页
针对传统人工检测绝缘子缺陷效率低的问题,提出一种基于Faster-RCNN的绝缘子缺陷检测方法。首先对航拍的绝缘子缺陷图片进行数据增强,其次算法中使用残差网络结构并引入注意力机制,提升检测效果的同时降低了模型复杂性,使用组归一化方... 针对传统人工检测绝缘子缺陷效率低的问题,提出一种基于Faster-RCNN的绝缘子缺陷检测方法。首先对航拍的绝缘子缺陷图片进行数据增强,其次算法中使用残差网络结构并引入注意力机制,提升检测效果的同时降低了模型复杂性,使用组归一化方式代替批归一化方式,最后用Soft-NMS代替NMS进行结果优化。试验结果表明,改进后算法的精确率达到90.3%,与改进前相对比精确率提升了14.7%,使绝缘子缺陷检测的有效性与可靠性得到了提升。 展开更多
关键词 绝缘子 Faster-RCNN 残差网络 注意力机制 归一化
下载PDF
基于密集特征推理及混合损失函数的修复算法 被引量:1
9
作者 李海燕 尹浩林 +1 位作者 李鹏 周丽萍 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期99-109,共11页
为有效解决现有算法修复大面积不规则缺失图像时存在特征利用率低、图像结构连贯性差的问题,提出基于密集特征推理(DFR)及混合损失函数的图像修复算法。修复网络由多个特征推理(FR)模块密集连接组成,首先将待修复图像输入第1个推理模块... 为有效解决现有算法修复大面积不规则缺失图像时存在特征利用率低、图像结构连贯性差的问题,提出基于密集特征推理(DFR)及混合损失函数的图像修复算法。修复网络由多个特征推理(FR)模块密集连接组成,首先将待修复图像输入第1个推理模块中进行特征推理,之后将输出特征图通道合并送入下一个推理模块,后续推理的每一个模块的输入都是来自前面所有推理模块的推理特征,如此循环,以充分利用每个推理模块捕获的特征信息;然后提出一个传播一致性注意力机制(PCA),提高修补区域与已知区域的整体一致性;最后,提出混合损失函数(ML)优化修复结果的结构连贯性。整个DFR网络使用组归一化(GN),小批量训练也可达到优异的修复效果。在国际公认的Paris StreetView巴黎街景数据集和CelebA人脸数据集上验证文中所提算法的性能,主客观的实验结果表明:所提算法能有效修复大面积不规则缺失图像,提升特征利用率与结构连贯性,其平均峰值信噪比(PSNR)、平均结构相似度(SSIM)、均方误差(MSE)、弗雷歇距离(FID)及学习感知图像块相似度(LPIPS)指标优于对比算法。 展开更多
关键词 图像修复 密集特征推理 注意力机制 混合损失函数 归一化
下载PDF
改进YOLOX Tiny与DeepSort相结合的多目标跟踪算法 被引量:1
10
作者 叶文韬 刘钧 李登峰 《西安工业大学学报》 CAS 2023年第3期248-259,共12页
针对多目标跟踪时有发生误检、漏检等情况,提出了CSD YOLOX Tiny的多目标跟踪算法。在骨干网络中搭建结合三卷积的跨阶段局部Swin Transformer Block结构,提升网络模型对全局和上下文信息的捕获能力。在网络中引入组归一化,加快网络模... 针对多目标跟踪时有发生误检、漏检等情况,提出了CSD YOLOX Tiny的多目标跟踪算法。在骨干网络中搭建结合三卷积的跨阶段局部Swin Transformer Block结构,提升网络模型对全局和上下文信息的捕获能力。在网络中引入组归一化,加快网络模型收敛速度并提升跟踪精度;采用坐标注意力机制对不同通道特征之间的相关信息进行有效整合,提升网络模型对感兴趣区域特征的获取能力。实验结果表明:提出的多目标跟踪算法跟踪精度提升了2.36%,达到56.38%。在保证网络模型参数量较少、计算量较小的情况下,提出的跟踪算法较好地改善误检和漏检问题,相比于YOLOX Tiny DeepSort算法误检、漏检数量分别减少了811、1574个,能满足常规设备实时高效的多目标跟踪任务需求。 展开更多
关键词 多目标跟踪 YOLOX Tiny网络 Swin Transformer网络 归一化 坐标注意力机制 DeepSort算法
下载PDF
结合SE与BiSRU的Unet的音乐源分离方法 被引量:5
11
作者 张瑞峰 白金桐 +1 位作者 关欣 李锵 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第11期106-115,134,共11页
音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离... 音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离模型的表示能力和计算效率,在目前时域分离性能最优的Demucs模型基础上进行改进,提出了一种端对端网络Unet-SE-BiSRU。该模型在广义编码层和解码层中引入了注意力机制,采用挤压-激励块(SE)根据待分离音频的种类有选择地提取特征;在一维卷积后增加组归一化,以应对在学习过程中可能出现的梯度爆炸或梯度消失问题;将双向长短期记忆网络改进为双向简单循环单元(BiSRU),进一步提高了学习的并行性,且降低了模型参数量。实验结果表明,改进后的网络模型的信噪比指标提升了0.34 dB,在目前检索到的文献的时域端对端方法中取得了最好的分离性能,并且训练时间缩短为源模型的2/5。 展开更多
关键词 音乐源分离 U型网络 时域端到端分离模型 简单循环单元 挤压-激励块 归一化
下载PDF
移动信令在城市交通模型构建中的价值体现
12
作者 余萍 《中国新通信》 2021年第11期63-64,共2页
随着无线网络的大量普及,人们生活中产生大量的无线网络信令数据,找出其中的共同规律,研究人员可以借此规律来建立城市交通模型。其中,组归一化网格循环网络和卷积神经网络在构建模型中起主导作用。组归一化处理能提升模型的数据源规模... 随着无线网络的大量普及,人们生活中产生大量的无线网络信令数据,找出其中的共同规律,研究人员可以借此规律来建立城市交通模型。其中,组归一化网格循环网络和卷积神经网络在构建模型中起主导作用。组归一化处理能提升模型的数据源规模和收敛速度,简化内部程序循环的计算过程,解决传统模型计算量大的问题,通过记忆单元对所需数据进行存储和更新。针对噪声数据,对数据集进行网格化和筛选,以规避噪声数据的影响。卷积神经网络具有更好的用户分类性能,提高了识别率。 展开更多
关键词 无线网络信令 归一化 卷积神经网络
下载PDF
一种基于双重网络模型的单幅图像超分辨率方法
13
作者 倪翠 王朋 +1 位作者 张广渊 李克峰 《应用科学学报》 CAS CSCD 北大核心 2021年第2期321-329,共9页
本文对深度学习领域中的高效亚像素卷积神经网络(efficient sub-pixel convo-lutional neural network,ESPCN)算法进行了改进,通过加入残差网络知识,调整原有的ESPCN构造结构,提出了一种双重网络模型下单幅图像超分辨率重建方法。通过... 本文对深度学习领域中的高效亚像素卷积神经网络(efficient sub-pixel convo-lutional neural network,ESPCN)算法进行了改进,通过加入残差网络知识,调整原有的ESPCN构造结构,提出了一种双重网络模型下单幅图像超分辨率重建方法。通过实验证明:该算法能够有效地提高单幅图像超分辨率重建的精度,丰富重建后的细节信息。 展开更多
关键词 残差网络 亚像素卷积 归一化 隐藏层
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部