期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
能量参数解码端HMM估计算法
1
作者 计哲 高圣翔 +1 位作者 唐昆 金鑫 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期869-872,共4页
在低速率语音编码算法中,如何对特征参数进行有效的量化表示是影响声码器合成语音质量的关键因素。该文提出一种能量参数解码端恢复算法,它利用线谱频率(linespectral frequency,LSF)和清浊音判决参数(unvoiced/voiced decision,U/V)估... 在低速率语音编码算法中,如何对特征参数进行有效的量化表示是影响声码器合成语音质量的关键因素。该文提出一种能量参数解码端恢复算法,它利用线谱频率(linespectral frequency,LSF)和清浊音判决参数(unvoiced/voiced decision,U/V)估计能量参数的变化轨迹。该算法利用特征参数之间的相关性,采用隐Markov模型(hiddenMarkov model,HMM)描述LSF、U/V和能量参数之间的统计特性,通过对能量进行解码端恢复,省去量化所需的比特数,从而提高特征参数的整体量化性能。测试结果表明:能量参数解码端恢复算法能够将150b/s混合激励线性预测编码算法(mixed excitation linear prediction,MELP)的合成语音平均意见得分(mean opinion score,MOS)提高0.042。该算法应用于超低速率声码器参数量化是可行的。 展开更多
关键词 语音信号处理 能量参数 隐MARKOV模型 线谱频率参数 参数编码
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部