传统的微弱信号检测在检测信噪比较低的信号时效果不理想,基于此提出了一种基于Duffing振子和Van der pol振子的耦合非线性系统,建立了非线性耦合模型,详述了耦合系数对耦合非线性系统的影响。采用Simulink数值仿真的方法,分析了Duffin...传统的微弱信号检测在检测信噪比较低的信号时效果不理想,基于此提出了一种基于Duffing振子和Van der pol振子的耦合非线性系统,建立了非线性耦合模型,详述了耦合系数对耦合非线性系统的影响。采用Simulink数值仿真的方法,分析了Duffing振子和Van der pol振子耦合非线性系统的动力学行为,阐述了基于相平面变化进行微弱信号检测的工作原理。并且具体分析了耦合系统在色噪声背景下的微弱信号检测效果,取得了很好的效果。展开更多
The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary ...The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.展开更多
文摘传统的微弱信号检测在检测信噪比较低的信号时效果不理想,基于此提出了一种基于Duffing振子和Van der pol振子的耦合非线性系统,建立了非线性耦合模型,详述了耦合系数对耦合非线性系统的影响。采用Simulink数值仿真的方法,分析了Duffing振子和Van der pol振子耦合非线性系统的动力学行为,阐述了基于相平面变化进行微弱信号检测的工作原理。并且具体分析了耦合系统在色噪声背景下的微弱信号检测效果,取得了很好的效果。
文摘The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.