The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an...The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.展开更多
In this work, Green-Naghdi (GN) equations with general weight functions were derived in a simple way. A wave-absorbing beach was also considered in the general GN equations. A numerical solution for a level higher t...In this work, Green-Naghdi (GN) equations with general weight functions were derived in a simple way. A wave-absorbing beach was also considered in the general GN equations. A numerical solution for a level higher than 4 was not feasible in the past with the original GN equations. The GN equations for shallow water waves were simplified here, which make the application of high level (higher than 4) equations feasible. The linear dispersion relationships of the first seven levels were presented. The accuracy of dispersion relationships increased as the level increased. Level 7 GN equations are capable of simulating waves out to wave number times depth kd 〈 26. Numerical simulation of nonlinear water waves was performed by use of Level 5 and 7 GN equations, which will be presented in the next paper.展开更多
In this paper we study nonlinear periodic deep water waves propagating on a background shear current,which decays exponentially with depth.We extend the study of Cheng,Cang and Liao(2009) by introducing a second param...In this paper we study nonlinear periodic deep water waves propagating on a background shear current,which decays exponentially with depth.We extend the study of Cheng,Cang and Liao(2009) by introducing a second parameter which measures the depth of the shear current.A high-order convergent analytical series solution is obtained by the homotopy analysis method(HAM).A detailed analysis of the impact of the depth parameter is given.We find that increasing this parameter so that the shear current is thinner reduces the wave phase speed,smoothes the wave crest,sharpens the trough,and enlarges the maximum wave height for the case of propagating waves on an opposing current;while it produces the opposite effect on an aiding current.展开更多
文摘The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.
基金Supported by the Special Fund for Basic Scientific Research of Central Colleges Harbin Engineering University(Harbin)the National Natural Science Foundation of China+1 种基金Doctor Subject Foundation of the Ministry of Education of Chinathe"111"project(B07019)
文摘In this work, Green-Naghdi (GN) equations with general weight functions were derived in a simple way. A wave-absorbing beach was also considered in the general GN equations. A numerical solution for a level higher than 4 was not feasible in the past with the original GN equations. The GN equations for shallow water waves were simplified here, which make the application of high level (higher than 4) equations feasible. The linear dispersion relationships of the first seven levels were presented. The accuracy of dispersion relationships increased as the level increased. Level 7 GN equations are capable of simulating waves out to wave number times depth kd 〈 26. Numerical simulation of nonlinear water waves was performed by use of Level 5 and 7 GN equations, which will be presented in the next paper.
基金supported by the National Natural Science Foundation of China (Grant No.51002195)
文摘In this paper we study nonlinear periodic deep water waves propagating on a background shear current,which decays exponentially with depth.We extend the study of Cheng,Cang and Liao(2009) by introducing a second parameter which measures the depth of the shear current.A high-order convergent analytical series solution is obtained by the homotopy analysis method(HAM).A detailed analysis of the impact of the depth parameter is given.We find that increasing this parameter so that the shear current is thinner reduces the wave phase speed,smoothes the wave crest,sharpens the trough,and enlarges the maximum wave height for the case of propagating waves on an opposing current;while it produces the opposite effect on an aiding current.