为减少动态环境对移动机器人同时定位与地图构建(simultaneous localization and mapping,SLAM)的影响,提出了一种特征点法视觉里程计自适应优化算法。该算法有助于改善光照条件变化情况下图像特征的不变性,有效提取纹理信息不充分区域...为减少动态环境对移动机器人同时定位与地图构建(simultaneous localization and mapping,SLAM)的影响,提出了一种特征点法视觉里程计自适应优化算法。该算法有助于改善光照条件变化情况下图像特征的不变性,有效提取纹理信息不充分区域的特征用于图像匹配。采用降采样法建立图像金字塔,将每个缩放后的图像根据预先设定规则划分为多个图像块。在每个图像块上进行光照非线性调整来增加图像细节,通过计算图像灰度概率分布来剔除无纹理区域。基于提出的方法建立了SLAM系统视觉里程计,并在TUM数据集上进行了验证。结果表明:该算法可以减小移动机器人运动轨迹误差,改善机器人在不稳定动态环境下视觉里程计的性能。展开更多
基于PatchMatch的多视图立体(MVS)方法依据输入多幅图像估计场景的深度,目前已应用于大规模场景三维重建。然而,由于特征匹配不稳定、仅依赖光度一致性不可靠等原因,现有方法在弱纹理区域的深度估计准确性和完整性较低。针对上述问题,...基于PatchMatch的多视图立体(MVS)方法依据输入多幅图像估计场景的深度,目前已应用于大规模场景三维重建。然而,由于特征匹配不稳定、仅依赖光度一致性不可靠等原因,现有方法在弱纹理区域的深度估计准确性和完整性较低。针对上述问题,提出一种基于四叉树先验辅助的MVS方法。首先,利用图像像素值获得局部纹理;其次,基于自适应棋盘网格采样的块匹配多视图立体视觉方法(ACMH)获得粗略的深度图,结合弱纹理区域中的结构信息,采用四叉树分割生成先验平面假设;再次,融合上述信息,设计一种新的多视图匹配代价函数,引导弱纹理区域得到最优深度假设,进而提高立体匹配的准确性;最后,在ETH3D、Tanks and Temples和中国科学院古建筑数据集上与多种现有的传统MVS方法进行对比实验。结果表明所提方法性能更优,特别是在ETH3D测试数据集中,当误差阈值为2 cm时,相较于当前先进的多尺度平面先验辅助方法(ACMMP),它的F1分数和完整性分别提高了1.29和2.38个百分点。展开更多
基金Natural Science Foundation of Tianjin(18JCYBJC84900)。
文摘为减少动态环境对移动机器人同时定位与地图构建(simultaneous localization and mapping,SLAM)的影响,提出了一种特征点法视觉里程计自适应优化算法。该算法有助于改善光照条件变化情况下图像特征的不变性,有效提取纹理信息不充分区域的特征用于图像匹配。采用降采样法建立图像金字塔,将每个缩放后的图像根据预先设定规则划分为多个图像块。在每个图像块上进行光照非线性调整来增加图像细节,通过计算图像灰度概率分布来剔除无纹理区域。基于提出的方法建立了SLAM系统视觉里程计,并在TUM数据集上进行了验证。结果表明:该算法可以减小移动机器人运动轨迹误差,改善机器人在不稳定动态环境下视觉里程计的性能。
文摘基于PatchMatch的多视图立体(MVS)方法依据输入多幅图像估计场景的深度,目前已应用于大规模场景三维重建。然而,由于特征匹配不稳定、仅依赖光度一致性不可靠等原因,现有方法在弱纹理区域的深度估计准确性和完整性较低。针对上述问题,提出一种基于四叉树先验辅助的MVS方法。首先,利用图像像素值获得局部纹理;其次,基于自适应棋盘网格采样的块匹配多视图立体视觉方法(ACMH)获得粗略的深度图,结合弱纹理区域中的结构信息,采用四叉树分割生成先验平面假设;再次,融合上述信息,设计一种新的多视图匹配代价函数,引导弱纹理区域得到最优深度假设,进而提高立体匹配的准确性;最后,在ETH3D、Tanks and Temples和中国科学院古建筑数据集上与多种现有的传统MVS方法进行对比实验。结果表明所提方法性能更优,特别是在ETH3D测试数据集中,当误差阈值为2 cm时,相较于当前先进的多尺度平面先验辅助方法(ACMMP),它的F1分数和完整性分别提高了1.29和2.38个百分点。