采用超音速微粒轰击技术(Supersonic Fine Particles Bombarding,SFPB)对调质态合金钢38CrSi进行表面纳米化处理;利用X射线衍射、扫描电镜、透射电镜等分析技术研究不同工艺条件下表面纳米化层的微观组织结构特征。结果表明:经SFP...采用超音速微粒轰击技术(Supersonic Fine Particles Bombarding,SFPB)对调质态合金钢38CrSi进行表面纳米化处理;利用X射线衍射、扫描电镜、透射电镜等分析技术研究不同工艺条件下表面纳米化层的微观组织结构特征。结果表明:经SFPB处理后,材料表层组织严重细化,并形成了纳米结构层(晶粒尺寸〈100nm),随处理时间的延长,最表面纳米晶的尺寸变化不大,纳米结构层的厚度有所增加;当处理时间为240s时,在最表面层形成了平均晶粒尺寸约为16nm的具有随机取向的等轴纳米晶。纳米结构层的晶粒尺寸随着距表面距离的增加而增大。在距表面约25μm处,存在着大量的由位错线和高密度的位错缠结分割的胞块,尺寸为80~100nm;分析表明位错运动是表面纳米化的主要原因。展开更多
采用超音速轰击技术(Supersonic Fine Particles Bombarding,SFPB)对调质态合金钢38CrSi进行表面纳米化处理,在材料表面制备了纳米结构表层;利用X射线衍射、扫描电镜和透射电镜等分析技术研究了表面纳米层的微观结构特征。结果表...采用超音速轰击技术(Supersonic Fine Particles Bombarding,SFPB)对调质态合金钢38CrSi进行表面纳米化处理,在材料表面制备了纳米结构表层;利用X射线衍射、扫描电镜和透射电镜等分析技术研究了表面纳米层的微观结构特征。结果表明:经SFPB处理后,材料表层发生了严重的塑性变形,表面形成了晶粒尺寸约为15nm的纳米结构层,微观应变约为0.19%;表面纳米层的厚度约为20μm(晶粒尺寸〈100nm),纳米晶粒的尺寸随着距表面距离的增加而增大;在距表面40μm的范围内,高密度的位错墙和位错缠结将晶粒分为了尺寸为200~400nm的胞块结构,分析表明表面纳米化主要是位错运动的结果。展开更多
文摘采用超音速微粒轰击技术(Supersonic Fine Particles Bombarding,SFPB)对调质态合金钢38CrSi进行表面纳米化处理;利用X射线衍射、扫描电镜、透射电镜等分析技术研究不同工艺条件下表面纳米化层的微观组织结构特征。结果表明:经SFPB处理后,材料表层组织严重细化,并形成了纳米结构层(晶粒尺寸〈100nm),随处理时间的延长,最表面纳米晶的尺寸变化不大,纳米结构层的厚度有所增加;当处理时间为240s时,在最表面层形成了平均晶粒尺寸约为16nm的具有随机取向的等轴纳米晶。纳米结构层的晶粒尺寸随着距表面距离的增加而增大。在距表面约25μm处,存在着大量的由位错线和高密度的位错缠结分割的胞块,尺寸为80~100nm;分析表明位错运动是表面纳米化的主要原因。
文摘采用超音速轰击技术(Supersonic Fine Particles Bombarding,SFPB)对调质态合金钢38CrSi进行表面纳米化处理,在材料表面制备了纳米结构表层;利用X射线衍射、扫描电镜和透射电镜等分析技术研究了表面纳米层的微观结构特征。结果表明:经SFPB处理后,材料表层发生了严重的塑性变形,表面形成了晶粒尺寸约为15nm的纳米结构层,微观应变约为0.19%;表面纳米层的厚度约为20μm(晶粒尺寸〈100nm),纳米晶粒的尺寸随着距表面距离的增加而增大;在距表面40μm的范围内,高密度的位错墙和位错缠结将晶粒分为了尺寸为200~400nm的胞块结构,分析表明表面纳米化主要是位错运动的结果。