-
题名多特征多阈值级联AdaBoost行人检测器
被引量:9
- 1
-
-
作者
崔华
张骁
郭璐
袁超
薛世焦
宋焕生
-
机构
长安大学信息工程学院
-
出处
《交通运输工程学报》
EI
CSCD
北大核心
2015年第2期109-117,共9页
-
基金
国家863计划项目(2012AA112312)
-
文摘
为了满足更快、更准、更鲁棒的行人检测需求,考虑交通监控视频图像质量不高与局部特征不明显的缺点,采用简单的行人特征来实现行人检测。除矩形度、高宽比、轮廓复杂度、宽度比、行人面积特征外,特定选用了对遮挡等干扰具有强鲁棒性的头部圆形度这一简单的局部特征。考虑交通监控视频图像中行人的尺寸变化,引入区域划分策略划分图像区域。兼顾高检测率和低误检率,根据分类误差最小原则与正样本分类率最大原则训练多个单特征多阈值AdaBoost行人检测器。为了优化多个行人检测器级联后的检测性能,在兼顾检测性能和检测速度的基础上,定义了以贡献率作为行人检测器的级联规则,依据贡献率大小确定的级联次序为基于高宽比、宽度比、矩形度、行人面积、轮廓复杂度和头部圆形度的行人检测器,依次进行级联,建立了新的多特征多阈值级联AdaBoost行人检测器。选用3个交通场景对行人检测器进行测试,并与单级AdaBoost行人检测器与现有2种级联AdaBoost行人检测器进行比较。分析结果表明:在3个交通场景的检测中,相比其他几种行人检测器,多特征多阈值级联AdaBoost行人检测器具有较高检测率、较快的检测速度和较低误检率,检测率最低为96.70%,误检率最高为0.67%,检测时间小于5s,满足交通场景中对行人检测实时性和可靠性的要求。
-
关键词
交通图像处理
行人检测
特征提取
ADABOOST
分类器
区域划分
级联规则
-
Keywords
traffic image processing
pedestrian detection
feature extraction
AdaBoost classifier
region division
cascade rule
-
分类号
U491.6
[交通运输工程—交通运输规划与管理]
-
-
题名使用触发器建立参照完整性
被引量:5
- 2
-
-
作者
李作主
-
机构
中南民族大学计算与实验中心
-
出处
《计算机与现代化》
2008年第9期137-139,共3页
-
文摘
介绍了触发器和参照完整性的定义和功能,实现了在VFP中使用触发器建立参照完整性的方法。
-
关键词
触发器
参照完整性
限制规则
级联规则
-
Keywords
trigger
referential integrity
restrict
cascade
-
分类号
TP311
[自动化与计算机技术—计算机软件与理论]
-