以山药为原料,研究其红外干燥特性及数学模型。通过实验收集了不同切片厚度和干燥温度下,山药片水分比(MR)随干燥时间(t)的变化数据,得到了山药片的干燥曲线,并计算了干燥过程中的有效水分扩散系数(Deff)和干燥活化能(Ea)。实验结果表明...以山药为原料,研究其红外干燥特性及数学模型。通过实验收集了不同切片厚度和干燥温度下,山药片水分比(MR)随干燥时间(t)的变化数据,得到了山药片的干燥曲线,并计算了干燥过程中的有效水分扩散系数(Deff)和干燥活化能(Ea)。实验结果表明,干燥温度(T)和切片厚度(L)对山药红外干燥特性有较大影响,温度越高,切片厚度越薄,山药的干燥速率(DR)越快,干燥时间越短。同时,通过拟合计算发现,在14种干燥模型中Modified Henderson and Pabis的预测值与实测值比较吻合,能够更好地反映干燥过程。在实验温度范围内,Deff在(2.1670×10^(-10)~46.369×10^(-10))m^2/s之间,随着干燥温度和切片厚度的增加而增加。山药片的Ea计算结果是30.2697 k J/mol,表明利用红外干燥技术从山药中除去1 kg水需要消耗大约1681.65k J的能量。展开更多
文摘以山药为原料,研究其红外干燥特性及数学模型。通过实验收集了不同切片厚度和干燥温度下,山药片水分比(MR)随干燥时间(t)的变化数据,得到了山药片的干燥曲线,并计算了干燥过程中的有效水分扩散系数(Deff)和干燥活化能(Ea)。实验结果表明,干燥温度(T)和切片厚度(L)对山药红外干燥特性有较大影响,温度越高,切片厚度越薄,山药的干燥速率(DR)越快,干燥时间越短。同时,通过拟合计算发现,在14种干燥模型中Modified Henderson and Pabis的预测值与实测值比较吻合,能够更好地反映干燥过程。在实验温度范围内,Deff在(2.1670×10^(-10)~46.369×10^(-10))m^2/s之间,随着干燥温度和切片厚度的增加而增加。山药片的Ea计算结果是30.2697 k J/mol,表明利用红外干燥技术从山药中除去1 kg水需要消耗大约1681.65k J的能量。
基金Project supported by the National Natural Science Foundation of China(31271908)Shandong Agricultural Science and Technology Achievement Transformation Project([2012]No.65)