滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷...滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷积块注意力模块(CBAM)的动态残差网络(Dy Res Net)用于预测轴承RUL。对振动信号进行快速傅里叶变换求得频域累积幅值特征,在动态残差网络中加入CBAM模块,并利用压缩激励模块进行特征细化得出预测结果,使用公开轴承数据集对所提模型进行评估。实验表明:与其他模型相比,Dy Res Net-CBAM模型能够充分提取特征信息,对轴承RUL预测的准确度高于其他模型。展开更多
文摘滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷积块注意力模块(CBAM)的动态残差网络(Dy Res Net)用于预测轴承RUL。对振动信号进行快速傅里叶变换求得频域累积幅值特征,在动态残差网络中加入CBAM模块,并利用压缩激励模块进行特征细化得出预测结果,使用公开轴承数据集对所提模型进行评估。实验表明:与其他模型相比,Dy Res Net-CBAM模型能够充分提取特征信息,对轴承RUL预测的准确度高于其他模型。