From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoic...From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoichiometric or excess quantities of base, which leads to high energy consump-tion, leaching problems, and side reactions. In this study, we investigated the high-efficiency oxida-tive esterification of furfural to methylfuroate by molecular oxygen with a Co-N-C/MgO catalyst. The catalyst was prepared by direct pyrolysis of a cobalt(Ⅱ) phenanthroline complex on MgO at 800℃ under N2 atmosphere. From furfural, 93.0% conversion and 98.5% selectivity toward methylfuroate were achieved under 0.5 MPa O2 with reaction at 100 ℃ for 12 h without a basic additive. The con-version and selectivity were much higher than those obtained with cobalt catalysts produced by pyrolysis of a cobalt(Ⅱ) phenanthroline complex on activated carbon or typical basic supports, in-cluding NaX, NaY, and CaO. X-ray photoelectron spectroscopy, X-ray diffraction, transmission elec-tron microscopy, and experimental results revealed that the high efficiency of Co-N-C/MgO for pro-duction of methylfuroate was closely related to the cobalt-nitrogen-doped carbon species and its catalytic ability in hydrogen abstraction. In contrast, Co-N-C(HCl) that synthesized by removing MgO with HCl from Co-N-C/MgO, as the catalyst produced mainly an acetal as a condensation prod-uct, and chloride ions had a negative effect on the oxidative esterification. Although the catalytic performance of the cobalt-nitrogen-doped carbon species was greatly affected by HCl treatment, it could be recovered to a great extent by addition of MgO. Moreover, changes in the oxygen pressure hardly affected the oxidative esterification of furfural with Co-N-C/MgO. This study not only pro-vides an effective approach to prepare methylfuroate, but also for designing high-performance non-precious metal catalysts for the oxidative esterificatio展开更多
Using NaHSO4·H2O as catalyst,methyl furoate was synthesized from methanol and furoic acid prepared from furfural by Cannizzaro reaction.The effects of reactant molar ratio,catalyst amount,and reaction time on the...Using NaHSO4·H2O as catalyst,methyl furoate was synthesized from methanol and furoic acid prepared from furfural by Cannizzaro reaction.The effects of reactant molar ratio,catalyst amount,and reaction time on the yield of methyl-furoate were discussed.The optimum conditions were:nmethanol ∶nfuroic acid ∶nNaHSO4·H2O =6∶1∶0.2,reaction time 6.0 h.Under the above condition the yield was 87.8%.The structure of the product was confirmed by IR,1H NMR spectra.The technology is more convenient due to milder condition,lower cost and higher yield,so the process is suitable for industrialization.展开更多
基金supported by the National Natural Science Foundation of China(21233008,21643013,21690084)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020300)the Youth Innovation Promotion Association CAS(2013121)~~
文摘From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoichiometric or excess quantities of base, which leads to high energy consump-tion, leaching problems, and side reactions. In this study, we investigated the high-efficiency oxida-tive esterification of furfural to methylfuroate by molecular oxygen with a Co-N-C/MgO catalyst. The catalyst was prepared by direct pyrolysis of a cobalt(Ⅱ) phenanthroline complex on MgO at 800℃ under N2 atmosphere. From furfural, 93.0% conversion and 98.5% selectivity toward methylfuroate were achieved under 0.5 MPa O2 with reaction at 100 ℃ for 12 h without a basic additive. The con-version and selectivity were much higher than those obtained with cobalt catalysts produced by pyrolysis of a cobalt(Ⅱ) phenanthroline complex on activated carbon or typical basic supports, in-cluding NaX, NaY, and CaO. X-ray photoelectron spectroscopy, X-ray diffraction, transmission elec-tron microscopy, and experimental results revealed that the high efficiency of Co-N-C/MgO for pro-duction of methylfuroate was closely related to the cobalt-nitrogen-doped carbon species and its catalytic ability in hydrogen abstraction. In contrast, Co-N-C(HCl) that synthesized by removing MgO with HCl from Co-N-C/MgO, as the catalyst produced mainly an acetal as a condensation prod-uct, and chloride ions had a negative effect on the oxidative esterification. Although the catalytic performance of the cobalt-nitrogen-doped carbon species was greatly affected by HCl treatment, it could be recovered to a great extent by addition of MgO. Moreover, changes in the oxygen pressure hardly affected the oxidative esterification of furfural with Co-N-C/MgO. This study not only pro-vides an effective approach to prepare methylfuroate, but also for designing high-performance non-precious metal catalysts for the oxidative esterificatio
文摘Using NaHSO4·H2O as catalyst,methyl furoate was synthesized from methanol and furoic acid prepared from furfural by Cannizzaro reaction.The effects of reactant molar ratio,catalyst amount,and reaction time on the yield of methyl-furoate were discussed.The optimum conditions were:nmethanol ∶nfuroic acid ∶nNaHSO4·H2O =6∶1∶0.2,reaction time 6.0 h.Under the above condition the yield was 87.8%.The structure of the product was confirmed by IR,1H NMR spectra.The technology is more convenient due to milder condition,lower cost and higher yield,so the process is suitable for industrialization.