Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We pr...Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We propose a joint PP-PS inversion method based on the exact Zoeppritz equations that combines Bayesian statistics and generalized linear inversion.A forward model based on the exact Zoeppritz equations is built to minimize the error of the approximations in the large-angle data,the prior distribution of the model parameters is added as a regularization item to decrease the ill-posed nature of the inversion,low-frequency constraints are introduced to stabilize the low-frequency data and improve robustness,and a fast algorithm is used to solve the objective function while minimizing the computational load.The proposed method has superior antinoising properties and well reproduces real data.展开更多
基金supported by the 863 Program of China(No.2013AA064201)
文摘Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We propose a joint PP-PS inversion method based on the exact Zoeppritz equations that combines Bayesian statistics and generalized linear inversion.A forward model based on the exact Zoeppritz equations is built to minimize the error of the approximations in the large-angle data,the prior distribution of the model parameters is added as a regularization item to decrease the ill-posed nature of the inversion,low-frequency constraints are introduced to stabilize the low-frequency data and improve robustness,and a fast algorithm is used to solve the objective function while minimizing the computational load.The proposed method has superior antinoising properties and well reproduces real data.