Numerical simulations of nanoparticle migration in a fully developed turbulent pipe flow are performed.The evolution of particle number concentration,total particle mass,polydispersity,particle diameter and geometric ...Numerical simulations of nanoparticle migration in a fully developed turbulent pipe flow are performed.The evolution of particle number concentration,total particle mass,polydispersity,particle diameter and geometric standard deviation is obtained by using a moment method to approximate the particle general dynamic equation.The effects of Schmidt number and Damkhler number on the evolution of the particle parameters are analyzed.The results show that nanoparticles move to the pipe center.The particle number concentration and total particle mass are distributed non-uniformly along the radial direction.In an initially monodisperse particle field,the particle clusters with various sizes will be produced because of coagulation.As time progresses,the particle cluster diameter grows from an initial value at different rates depending on the radial position.The largest particle clusters are found in the pipe center.The particle cluster number concentration and total particle mass decrease with the increase of Schmidt number in the region near the pipe center,and the particles with lower Schmidt number are of many dif-ferent sizes,i.e.more polydispersity.The particle cluster diameter and geometric standard deviation increase with the increase of Damkhler number at the same radial position.The migration properties for nano-sized particles are different from that for micro-sized particles.展开更多
A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is...A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.展开更多
基金Supported by the Major Program of the National Natural Science Foundation of China (11132008)
文摘Numerical simulations of nanoparticle migration in a fully developed turbulent pipe flow are performed.The evolution of particle number concentration,total particle mass,polydispersity,particle diameter and geometric standard deviation is obtained by using a moment method to approximate the particle general dynamic equation.The effects of Schmidt number and Damkhler number on the evolution of the particle parameters are analyzed.The results show that nanoparticles move to the pipe center.The particle number concentration and total particle mass are distributed non-uniformly along the radial direction.In an initially monodisperse particle field,the particle clusters with various sizes will be produced because of coagulation.As time progresses,the particle cluster diameter grows from an initial value at different rates depending on the radial position.The largest particle clusters are found in the pipe center.The particle cluster number concentration and total particle mass decrease with the increase of Schmidt number in the region near the pipe center,and the particles with lower Schmidt number are of many dif-ferent sizes,i.e.more polydispersity.The particle cluster diameter and geometric standard deviation increase with the increase of Damkhler number at the same radial position.The migration properties for nano-sized particles are different from that for micro-sized particles.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10747004,11065006,and 81060307
文摘A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.