期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于VMD-ICMSE和半监督判别SOINN L-Isomap的滚动轴承故障诊断 被引量:3
1
作者 戚晓利 王振亚 +2 位作者 吴保林 叶绪丹 潘紫微 《振动与冲击》 EI CSCD 北大核心 2020年第4期252-260,共9页
针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从... 针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从复杂域提取振动信号的故障特征,构建高维故障特征集;采用SSDSL-Isomap方法对高维故障特征集进行维数约简,提取出利于识别的低维、敏感故障特征子集;应用粒子群优化极限学习机(PSO-ELM)分类器对低维故障特征进行故障识别,判别故障类型。VMD-ICMSE方法集成了VMD自适应分解非线性信号与ICMSE衡量时间序列复杂性程度的优势,提高故障特征提取能力;SSDSL-Isomap方法综合了全局流形结构、半监督型双约束图构建以及SOINN界标点选取的优点,增强故障分类能力。调心球轴承故障诊断实验分析结果表明,该方法对实验数据的故障识别率达到100%。 展开更多
关键词 故障诊断 滚动轴承 SSDSL-Isomap 变分模态分解(VMD) 改进复合多尺度熵(ICMSE) 粒子优化极限学习机(pso-elm)
下载PDF
基于PSO-ELM的变压器油纸绝缘状态无损评估方法
2
作者 张德文 张健 +3 位作者 曲利民 吴迪星 刘贺千 张明泽 《电力工程技术》 北大核心 2024年第3期201-208,共8页
油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用... 油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用粒子群优化-极限学习机(particle swarm optimization-extreme learning machine,PSO-ELM)算法的参数预测方法,实现了基于回复电压曲线特征参量的油纸绝缘老化与受潮状态量化评估。由油纸绝缘模型理化性能分析的对比结果可知,基于PSO-ELM方法的预测值精度远高于传统ELM方法,油纸绝缘内含水率及纸板聚合度预测的绝对误差范围分别小于±0.4%、±30。 展开更多
关键词 油浸式变压器 油纸绝缘 回复电压 粒子优化-极限学习机(pso-elm)算法 状态评估 无损检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部