期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于电子舌的掺假羊奶快速定量预测模型 被引量:8
1
作者 韩慧 王志强 +3 位作者 李彩虹 马泽亮 国婷婷 殷廷家 《食品与机械》 CSCD 北大核心 2018年第12期53-56,共4页
为实现对掺假羊奶的快速、客观辨别,模仿人体味觉感知机理研制了一套便携式电子舌检测系统,并建立了一种能够快速鉴别掺假羊奶的新方法。系统检测时,首先对样本溶液进行大幅脉冲扫描,用以获取掺假羊奶的"指纹"信息,然后利用... 为实现对掺假羊奶的快速、客观辨别,模仿人体味觉感知机理研制了一套便携式电子舌检测系统,并建立了一种能够快速鉴别掺假羊奶的新方法。系统检测时,首先对样本溶液进行大幅脉冲扫描,用以获取掺假羊奶的"指纹"信息,然后利用离散小波变换(discrete wavelet transform,DWT)对"指纹"数据中的特征信息进行提取,最后在此基础上,采用主成分分析(principal component analysis,PCA)方法对不同掺假比例的羊奶进行定性辨别。采用粒子群优化极限学习机(Particle swarm optimization extreme learning machine,PSO-ELM)对不同掺假比例的羊奶进行了定量预测。通过试验数据得出,PCA对6种不同掺假比例的羊奶区分达到100%,区分效果好。PSO-ELM羊奶纯度预测模型拟合曲线非常接近实测值曲线,因此采用PSO-ELM方法建立掺假羊奶纯度定量预测模型具有较高的预测精度。 展开更多
关键词 电子舌 羊奶掺假 牛奶 主成分分析 粒子优化极限学习机 预测模型
下载PDF
粳稻冠层叶绿素含量PSO-ELM 高光谱遥感反演估算 被引量:8
2
作者 于丰华 冯帅 +3 位作者 赵依然 王定康 邢思敏 许童羽 《华南农业大学学报》 CAS CSCD 北大核心 2020年第6期59-66,共8页
【目的】叶绿素含量是表征粳稻生长状态的重要指示信息,利用无人机高光谱遥感技术及时获取区域尺度的粳稻叶绿素含量。【方法】以2016—2017年沈阳农业大学辽中水稻实验站粳稻无人机遥感试验数据为基础,利用连续投影算法(SPA)进行有效... 【目的】叶绿素含量是表征粳稻生长状态的重要指示信息,利用无人机高光谱遥感技术及时获取区域尺度的粳稻叶绿素含量。【方法】以2016—2017年沈阳农业大学辽中水稻实验站粳稻无人机遥感试验数据为基础,利用连续投影算法(SPA)进行有效波段的提取,提取的特征波段分别为410、481、533、702和798 nm。将提取出的特征波段作为输入,利用极限学习机(ELM)和粒子群优化的极限学习机(PSO-ELM)分别建立粳稻冠层叶绿素含量反演模型。在PSO-ELM模型中,针对PSO算法的种群规模(p)、惯性权重(w)、学习因子(C1、C2)、速度位置相关系数(m)这5个参数进行了优化。【结果】确定了最优参数:p为80,w为0.9~0.3线性递减,C1和C2分别为2.80和1.10,m为0.60。利用优化后的ELM和PSO-ELM所建立的粳稻冠层叶绿素含量模型的决定系数分别为0.734和0.887,均方根误差分别为1.824和0.783。【结论】利用优化后的PSO-ELM建立的粳稻叶绿素含量反演模型精度要明显高于单纯利用ELM建立的反演模型,前者具有较好的粳稻叶绿素含量反演能力。本研究为东北粳稻叶绿素含量反演无人机遥感诊断提供了数据支撑和应用基础。 展开更多
关键词 无人 叶绿素含量 粳稻 高光谱遥感 粒子优化极限学习机
下载PDF
双层PSO-ELM融合室内定位算法 被引量:6
3
作者 徐岩 李宁宁 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2021年第1期61-68,共8页
随着基于位置服务需求的增长,室内定位成为国内外学者研究的重点领域.研究发现采用多传感器信息融合方法可以提高定位准确度,目前人们普遍认为利用多传感器的互补特性,结合各融合算法提升导航系统的整体精度是室内定位领域未来的发展趋... 随着基于位置服务需求的增长,室内定位成为国内外学者研究的重点领域.研究发现采用多传感器信息融合方法可以提高定位准确度,目前人们普遍认为利用多传感器的互补特性,结合各融合算法提升导航系统的整体精度是室内定位领域未来的发展趋势.本文提出一种基于双层粒子群极限学习机(PSO-ELM)神经网络的融合视觉和惯性信息的室内定位算法.第1层粒子群极限学习机(PSO-ELM)引入图像模糊判断来解决采集图像模糊时视觉定位算法误差大的问题,并计算出全局最优仿射变换矩阵作为粒子群极限学习机(PSO-ELM)的输入.同时,提出了一种基于视觉静态反馈和惯性特性的漂移校正方法来有效控制惯性导航系统(INS)的误差累积.第2层粒子群极限学习机(PSO-ELM)神经网络用于融合第1层粒子群极限学习机(PSO-ELM)获得的视觉定位结果和漂移校正后获得的惯性定位结果.将本算法所得融合后的定位结果分别与改进后的惯性定位结果和视觉定位结果进行比较,实验结果表明融合后的效果要优于单一算法的实验效果,定位精度和稳定性均得到提升.同时通过对比实验证明了本算法在存在外界干扰时也能保持良好的定位精度,具有较强的鲁棒性. 展开更多
关键词 室内定位 数据融合 视觉导航系统 惯性导航系统 粒子优化极限学习机
下载PDF
基于EEMD-HW-PSO-ELM耦合模型的排土场边坡位移预测模型 被引量:3
4
作者 康恩胜 赵泽熙 孟海东 《黄金科学技术》 CSCD 2022年第4期594-602,共9页
为了准确预测小样本、非线性特点的排土场边坡位移,提出了一种基于经验模态分解法、三次指数平滑法和粒子群优化极限学习机的EEMD-HW-PSO-ELM边坡位移组合预测模型。以伊敏露天矿排土场GPS位移监测数据为例,验证该模型的有效性。研究结... 为了准确预测小样本、非线性特点的排土场边坡位移,提出了一种基于经验模态分解法、三次指数平滑法和粒子群优化极限学习机的EEMD-HW-PSO-ELM边坡位移组合预测模型。以伊敏露天矿排土场GPS位移监测数据为例,验证该模型的有效性。研究结果表明:EEMD模型分解后的边坡位移时间序列包括4个IMF分量和1个余量,将分解后的数据重构为趋势项和波动项,物理意义明确。分别选择三次指数平滑法和粒子群优化极限学习机预测趋势项和波动项位移,将分项预测结果的等权叠加值作为最终预测结果,预测值的平均相对误差为0.38%,均方根误差为1.15。选择了BP模型和Elman模型进行对比预测,结果表明组合预测模型的预测效果较好,能够为边坡安全管理提供理论依据。 展开更多
关键词 排土场 边坡位移 耦合模型 集成经验模态分解 三次指数平滑法 粒子优化极限学习机
下载PDF
基于复杂度的通信辐射源目标识别方法 被引量:4
5
作者 陈小惠 彭杰 薛毓楠 《国外电子测量技术》 北大核心 2021年第5期22-26,共5页
针对现在通信辐射源个体识别方法的特征难以提取、计算复杂及识别率低等问题。提出了一种基于复杂度的通信辐射源目标识别方法。首先信号进行奇异值分解(SVD)降噪处理,从熵值和分形维数两个复杂度方向分析细微信号所带来的变化,通过对... 针对现在通信辐射源个体识别方法的特征难以提取、计算复杂及识别率低等问题。提出了一种基于复杂度的通信辐射源目标识别方法。首先信号进行奇异值分解(SVD)降噪处理,从熵值和分形维数两个复杂度方向分析细微信号所带来的变化,通过对比分析选择了样本熵、排列熵和盒维数作为特征参数;然后使用云自适应粒子群(CAPSO)的算法,优化极限学习机的阈值和连接权值,提高神经网络的分类预测精度,完成了辐射源个体的识别。仿真结果表明该方法在较低的信噪比环境下的识别率高达95%以上。 展开更多
关键词 通信辐射源 复杂度 粒子优化极限学习机 识别率
下载PDF
基于VMD-ICMSE和半监督判别SOINN L-Isomap的滚动轴承故障诊断 被引量:3
6
作者 戚晓利 王振亚 +2 位作者 吴保林 叶绪丹 潘紫微 《振动与冲击》 EI CSCD 北大核心 2020年第4期252-260,共9页
针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从... 针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从复杂域提取振动信号的故障特征,构建高维故障特征集;采用SSDSL-Isomap方法对高维故障特征集进行维数约简,提取出利于识别的低维、敏感故障特征子集;应用粒子群优化极限学习机(PSO-ELM)分类器对低维故障特征进行故障识别,判别故障类型。VMD-ICMSE方法集成了VMD自适应分解非线性信号与ICMSE衡量时间序列复杂性程度的优势,提高故障特征提取能力;SSDSL-Isomap方法综合了全局流形结构、半监督型双约束图构建以及SOINN界标点选取的优点,增强故障分类能力。调心球轴承故障诊断实验分析结果表明,该方法对实验数据的故障识别率达到100%。 展开更多
关键词 故障诊断 滚动轴承 SSDSL-Isomap 变分模态分解(VMD) 改进复合多尺度熵(ICMSE) 粒子优化极限学习机(PSO-ELM)
下载PDF
基于LMD云模型与PSO-KELM的齿轮箱故障诊断 被引量:3
7
作者 赵小惠 谭琦 +3 位作者 胡胜 杨文彬 郇凯旋 张智杰 《机械传动》 北大核心 2023年第2期157-163,共7页
由于齿轮箱故障振动信号具有非平稳性与不确定性的特点,导致齿轮箱故障诊断精度较低。针对该问题提出一种基于局部均值分解(LMD)云模型特征提取结合粒子群优化(PSO)核极限学习机(KELM)的齿轮箱故障诊断方法。首先,将故障振动信号用LMD... 由于齿轮箱故障振动信号具有非平稳性与不确定性的特点,导致齿轮箱故障诊断精度较低。针对该问题提出一种基于局部均值分解(LMD)云模型特征提取结合粒子群优化(PSO)核极限学习机(KELM)的齿轮箱故障诊断方法。首先,将故障振动信号用LMD分解得到若干PF分量,并利用相关系数原则筛选出相关性较高的PF分量;其次,在云模型中输入筛选后的PF分量,采用逆向云发生器对特征向量进行提取并输入到PSO-KELM中进行故障诊断;最后,利用QPZZ-Ⅱ实验台齿轮箱实测数据对该方法进行了性能分析。结果表明,该方法识别精度为97.65%,与多种方法进行对比,该方法具备最佳识别性能。 展开更多
关键词 齿轮箱 故障诊断 局部均值分解 云模型 粒子优化极限学习机
下载PDF
卷烟滤棒中三醋酸甘油酯含量的现场快速检测研究 被引量:1
8
作者 杨光远 韩磊 +2 位作者 邓少鹏 刘强 王闻 《分析测试学报》 CAS CSCD 北大核心 2022年第5期792-796,共5页
为了提高卷烟滤棒中三醋酸甘油酯含量的检测效率,该文通过使用手持式近红外光谱仪,结合粒子群优化-极限学习机(PSO-ELM)回归算法建立了三醋酸甘油酯含量的定量预测模型,并与偏最小二乘回归(PLSR)和极限学习机回归(ELMR)进行了比较。实... 为了提高卷烟滤棒中三醋酸甘油酯含量的检测效率,该文通过使用手持式近红外光谱仪,结合粒子群优化-极限学习机(PSO-ELM)回归算法建立了三醋酸甘油酯含量的定量预测模型,并与偏最小二乘回归(PLSR)和极限学习机回归(ELMR)进行了比较。实验结果表明:相比于PLSR和ELMR模型,所建立的PSOELM预测模型的决定系数R^(2)为0.9212,远高于PLSR预测模型的0.8604和ELMR预测模型的0.8772;同时,使用PSO-ELM模型的预测均方根误差(RMSEP)为0.39212,小于PLSR预测模型的0.49772和ELMR预测模型的0.47018。以上实验结果表明,所建立的近红外光谱定量模型能够应用于卷烟滤棒中三醋酸甘油酯含量的快速准确测量,为实现滤棒中三醋酸甘油酯含量的现场快速检测提供了良好的技术参考。 展开更多
关键词 卷烟滤棒 三醋酸甘油酯 手持近红外光谱 粒子优化-极限学习机
下载PDF
改进多元层次波动色散熵及其在滚动轴承故障诊断中的应用 被引量:12
9
作者 周付明 杨小强 +2 位作者 申金星 刘武强 刘小林 《振动与冲击》 EI CSCD 北大核心 2021年第22期167-174,共8页
针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(modified multivariate hierarchical fluctuation dispersion entro... 针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(modified multivariate hierarchical fluctuation dispersion entropy,MMHFDE),将其用于提取滚动轴承多通道振动信号中的故障特征,在此基础上提出一种基于MMHFDE,最大相关最小冗余(max-relevance and min-redundancy,mRMR)和粒子群优化核极限学习机(particle swarm optimization kernel extreme learning machine,PSO-KELM)的滚动轴承故障诊断新方法。使用MMHFDE提取滚动轴承不同状态的故障特征,而后采用mRMR从得到的故障特征中筛选敏感特征构成敏感特征向量;将敏感特征向量输入到基于PSO-KELM构建的故障分类器中进行故障识别。由试验结果可知,提出的方法可以有效识别滚动轴承不同故障状态。 展开更多
关键词 改进多元层次波动色散熵(MMHFDE) 最大相关最小冗余(mRMR) 粒子优化极限学习机(PSO-KELM) 滚动轴承 故障诊断
下载PDF
基于PSO-ELM的变压器油纸绝缘状态无损评估方法 被引量:1
10
作者 张德文 张健 +3 位作者 曲利民 吴迪星 刘贺千 张明泽 《电力工程技术》 北大核心 2024年第3期201-208,共8页
油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用... 油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用粒子群优化-极限学习机(particle swarm optimization-extreme learning machine,PSO-ELM)算法的参数预测方法,实现了基于回复电压曲线特征参量的油纸绝缘老化与受潮状态量化评估。由油纸绝缘模型理化性能分析的对比结果可知,基于PSO-ELM方法的预测值精度远高于传统ELM方法,油纸绝缘内含水率及纸板聚合度预测的绝对误差范围分别小于±0.4%、±30。 展开更多
关键词 油浸式变压器 油纸绝缘 回复电压 粒子优化-极限学习机(PSO-ELM)算法 状态评估 无损检测
下载PDF
基于卷积神经网络的人群突散异常行为检测 被引量:4
11
作者 徐桂菲 王平 +3 位作者 罗凡波 王伟 胡军 宋秋霜 《计算机工程与设计》 北大核心 2022年第5期1389-1396,共8页
为检测人群突散异常,提出一种基于卷积神经网络的人群突散异常行为检测方法。对于人群中的个体使用改进的多尺度卷积神经网络(MCNN)预测人群中每一个个体头部的坐标位置;根据提取出来的坐标点计算人群平均动能、人群密度值以及人群分布... 为检测人群突散异常,提出一种基于卷积神经网络的人群突散异常行为检测方法。对于人群中的个体使用改进的多尺度卷积神经网络(MCNN)预测人群中每一个个体头部的坐标位置;根据提取出来的坐标点计算人群平均动能、人群密度值以及人群分布熵这3种人群运动状态特征值,以此减少计算量;将3种运动状态特征值放入基于差分进化粒子群优化的极限学习机(DE-PSO-ELM)中进行训练预测,得到人群运动状态,实现人群突散异常行为的检测。仿真结果表明,该算法对人群突散异常行为检测有较好的效果,检测准确率达到99.75%。 展开更多
关键词 突散异常检测 平均动能 密度值 分布熵 差分进化粒子优化极限学习机
下载PDF
基于粒子群算法优化极限学习机的无源目标定位算法 被引量:2
12
作者 傅彬 《计算机应用与软件》 CSCD 2015年第11期325-328,共4页
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进... 为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。 展开更多
关键词 位置信息场 目标定位粒子优化算法极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部