The characteristics of single and multiple tandem jets(n=2,3,4) in crossflow have been investigated using the realizable k-ε model.The results of this model agree well with experimental measurements using PIV(Particl...The characteristics of single and multiple tandem jets(n=2,3,4) in crossflow have been investigated using the realizable k-ε model.The results of this model agree well with experimental measurements using PIV(Particle Image Velocimetry) or LIF(Laser Induced Fluorescence).We analyzed the calculated results and obtained detailed properties of velocity and concentration of the multiple jets in the pre-merging and post-merging regions.When the velocity ratio is identical,the bending degree of the leading jet is greater than that of the rear jets.The last jet penetrates deeper as the jet number increases,and the shielding effect of the front jet declines with jet spacing increase.Interaction of the jet and crossflow induces formation and development of a counter-rotating vortex pair(CVP).CVP makes the distribution of concentration appear kidney-shaped(except in the merging region),and maximum concentration is at the center of the counter-rotating vortex.Concentration at the CVP center is 1.03-1.4 times that of the local jet trajectory.Post-merging velocity and concentration characteristics differ from those of the single jet because of the shielding effect and mixing of all jets.This paper presents a unified formula of trajectory,concentration half-width and trajectory dilution,by introducing a reduction factor.展开更多
Volumetric particle image velocimetry(PIV)is a laser technique measuring three-component velocity field in a volume.Common volumetric PIV techniques are defocusing PIV,multi-view PIV and holographic PIV.Tomographic PI...Volumetric particle image velocimetry(PIV)is a laser technique measuring three-component velocity field in a volume.Common volumetric PIV techniques are defocusing PIV,multi-view PIV and holographic PIV.Tomographic PIV is an advanced approach of multi-view PIV,which significantly improves the spatial resolution of the measurement by using the multiplicative algebraic reconstruction technique(MART)to reconstruct the particle field.Due to the rapid progress being made in volumetric PIV measurements,this article focuses on introducing the principles of different volumetric PIV methods from aspects of particle reconstruction and velocity reconstruction.Advantages and limitations on applications are elaborated.Issues specific to volumetric PIV regarding illumination,digital imaging,depth of focus,ghost particle and spatial resolution are discussed.展开更多
This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation an...This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11172218)academic award for excellent Ph.D.Candidates funded by the Ministry of Education of China
文摘The characteristics of single and multiple tandem jets(n=2,3,4) in crossflow have been investigated using the realizable k-ε model.The results of this model agree well with experimental measurements using PIV(Particle Image Velocimetry) or LIF(Laser Induced Fluorescence).We analyzed the calculated results and obtained detailed properties of velocity and concentration of the multiple jets in the pre-merging and post-merging regions.When the velocity ratio is identical,the bending degree of the leading jet is greater than that of the rear jets.The last jet penetrates deeper as the jet number increases,and the shielding effect of the front jet declines with jet spacing increase.Interaction of the jet and crossflow induces formation and development of a counter-rotating vortex pair(CVP).CVP makes the distribution of concentration appear kidney-shaped(except in the merging region),and maximum concentration is at the center of the counter-rotating vortex.Concentration at the CVP center is 1.03-1.4 times that of the local jet trajectory.Post-merging velocity and concentration characteristics differ from those of the single jet because of the shielding effect and mixing of all jets.This paper presents a unified formula of trajectory,concentration half-width and trajectory dilution,by introducing a reduction factor.
基金supported by the National Natural Science Foundation of China(11102013 and 11327202)the"Weishi"Foundation of Beijing University of Aeronautics and Astronautics(YWF-12-RHRS-008)
文摘Volumetric particle image velocimetry(PIV)is a laser technique measuring three-component velocity field in a volume.Common volumetric PIV techniques are defocusing PIV,multi-view PIV and holographic PIV.Tomographic PIV is an advanced approach of multi-view PIV,which significantly improves the spatial resolution of the measurement by using the multiplicative algebraic reconstruction technique(MART)to reconstruct the particle field.Due to the rapid progress being made in volumetric PIV measurements,this article focuses on introducing the principles of different volumetric PIV methods from aspects of particle reconstruction and velocity reconstruction.Advantages and limitations on applications are elaborated.Issues specific to volumetric PIV regarding illumination,digital imaging,depth of focus,ghost particle and spatial resolution are discussed.
基金Supported by the National Natural Science Foundation of China(Nos.31072246,31272703)
文摘This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.