期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分位数半径的动态K-means算法
被引量:
5
1
作者
程明畅
刘友波
+1 位作者
张程嘉
马铁丰
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期48-55,共8页
K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而...
K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而在中心的融合过程中并没有有效利用类的几何信息.从类的几何特征入手,提出一种基于类的分位数半径的动态K-means算法(QRD K-means).此算法在层次K-means的基础上令每次K-means运算的k值变动起来,且又引入了分位数半径的概念,用样本点到类中心距离的分位数作为类的半径,将样本点间的关系简化为各个类的分位数半径与类中心的关系.通过中心点间距离与分位数半径大小的比较对中心点进行融合形成新类,从而快速给出良好的聚类结果,同时也确定了类的数目.在仿真实验中,通过与不同算法在时间和分类精确度上的比较分析,也证明该方法快速有效.
展开更多
关键词
K-MEANS
类
的
数目
分位数半径
动态K-means
下载PDF
职称材料
题名
基于分位数半径的动态K-means算法
被引量:
5
1
作者
程明畅
刘友波
张程嘉
马铁丰
机构
西南财经大学统计学院
四川大学电气信息学院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期48-55,共8页
基金
国家自然科学基金(11471264
11401148
+1 种基金
11571282
51437003)
文摘
K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而在中心的融合过程中并没有有效利用类的几何信息.从类的几何特征入手,提出一种基于类的分位数半径的动态K-means算法(QRD K-means).此算法在层次K-means的基础上令每次K-means运算的k值变动起来,且又引入了分位数半径的概念,用样本点到类中心距离的分位数作为类的半径,将样本点间的关系简化为各个类的分位数半径与类中心的关系.通过中心点间距离与分位数半径大小的比较对中心点进行融合形成新类,从而快速给出良好的聚类结果,同时也确定了类的数目.在仿真实验中,通过与不同算法在时间和分类精确度上的比较分析,也证明该方法快速有效.
关键词
K-MEANS
类
的
数目
分位数半径
动态K-means
Keywords
K-means
number of clusters
quantile radius
dynamic K-means
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分位数半径的动态K-means算法
程明畅
刘友波
张程嘉
马铁丰
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2018
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部