期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数据不平衡分布下轴承故障诊断方法 被引量:5
1
作者 曹洁 何智栋 +1 位作者 余萍 王进花 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第11期2523-2531,共9页
针对在滚动轴承的故障诊断中数据的不平衡分布会降低模型诊断能力的问题,本文提出一种首层拥有大尺度卷积核的一维卷积神经网络(WKFL-1DCNN)。WKFL-1DCNN首先使用较大的首层卷积核提取故障特征,并在交替的卷积层后添加批标准化(BN)层来... 针对在滚动轴承的故障诊断中数据的不平衡分布会降低模型诊断能力的问题,本文提出一种首层拥有大尺度卷积核的一维卷积神经网络(WKFL-1DCNN)。WKFL-1DCNN首先使用较大的首层卷积核提取故障特征,并在交替的卷积层后添加批标准化(BN)层来调整数据分布;然后使用类平衡损失函数代替交叉熵损失函数来抵消数据不平衡分布给网络造成的影响。实验表明,本文所作改进能够有效提升WKFL-1DCNN在不平衡故障诊断中的表现,其故障诊断能力优于其他对比算法。 展开更多
关键词 故障诊断 平衡数据分布 卷积神经网络 平衡损失函数 滚动轴承
原文传递
基于领域自适应的变工况轴承故障诊断
2
作者 曹洁 尹浩楠 +1 位作者 雷晓刚 王进花 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第8期2382-2390,共9页
针对轴承故障诊断中存在训练样本和测试样本分布不同及各类故障数据不平衡导致故障识别率低的问题,设计了一种基于改进残差网络(ResNet)的领域自适应故障诊断方法。在诊断网络第1层使用多维度卷积结构进行特征提取,得到不同维度的故障... 针对轴承故障诊断中存在训练样本和测试样本分布不同及各类故障数据不平衡导致故障识别率低的问题,设计了一种基于改进残差网络(ResNet)的领域自适应故障诊断方法。在诊断网络第1层使用多维度卷积结构进行特征提取,得到不同维度的故障特征信息;在领域自适应层采用局部最大平均差异(LMMD)对齐源域和目标域的分布,获取更多细粒度信息;使用类平衡损失函数(CBLoss)解决不平衡数据的训练问题,以Adam优化网络实现故障诊断。实验结果表明,所提方法可在故障样本类别不平衡下有较高的诊断结果。在2个轴承数据集和采集的风力发电机数据上进行实验验证,结果表明,所提方法具有一定的优越性,在数据样本不平衡情况下,诊断性能优于深度神经网络和领域自适应网络等深度迁移学习方法,可作为一种有效的跨工况故障分析方法。 展开更多
关键词 故障诊断 残差网络 数据不平衡 局部最大平均差异 平衡损失函数 轴承
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部