期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于样本抽样和权重调整的SWA-Adaboost算法 被引量:2
1
作者 高敬阳 赵彦 《计算机工程》 CAS CSCD 2014年第9期248-251,256,共5页
根据分类算法是依据样本区分度进行分类的原理,提出增加样本属性以提高样本区分度的方法,在样本预处理阶段对所有样本增加一个属性值dmin以加强样本之间的区分度。针对原始Adaboost算法在抽样阶段由于抽样不均而导致对某些类训练不足的... 根据分类算法是依据样本区分度进行分类的原理,提出增加样本属性以提高样本区分度的方法,在样本预处理阶段对所有样本增加一个属性值dmin以加强样本之间的区分度。针对原始Adaboost算法在抽样阶段由于抽样不均而导致对某些类训练不足的问题,采用均衡抽样方法,保证在抽样阶段所抽取的不同类样本的数量比例不变。针对原始算法样本权重增长过快的问题,给出新的权重调整策略,引入样本错分计数量count(n),有效地抑制样本权重增长速度。给出一种改进的Adaboost算法,即SWA-Adaboost算法,并采用美国加州大学机器学习UCI数据库中6种数据集的数据对改进算法与原始算法进行实验对比,结果证明,改进算法SWA-Adaboost在泛化性能上优于Adaboost算法,泛化误差平均降低9.54%。 展开更多
关键词 样本预处理 均衡抽样 权重调整 泛化性能 中心最小距离 样本区分度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部