期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多示例学习的簇频繁性分析及双角度融合嵌入
1
作者
杨梅
张靖宇
+1 位作者
闵帆
方宇
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第4期531-541,共11页
多示例学习(Multi-Instance Learning,MIL)的训练数据是由若干个未带标记的示例组成的带标记的包,基于嵌入的方法,通过将包嵌入成单向量来解决包表示问题,然而大部分现有方法忽略了示例与包的联系,难以保证所选示例的代表性.同时,单角...
多示例学习(Multi-Instance Learning,MIL)的训练数据是由若干个未带标记的示例组成的带标记的包,基于嵌入的方法,通过将包嵌入成单向量来解决包表示问题,然而大部分现有方法忽略了示例与包的联系,难以保证所选示例的代表性.同时,单角度的嵌入方法无法有效地提取正、负包的差异信息,使嵌入向量的质量较差.提出一种多示例学习的簇频繁性分析及双角度融合嵌入(FADE).簇频繁性分析技术从正、负子空间中分别筛选部分示例作为子空间的簇心,依据簇心将子空间聚类成簇,再计算簇频繁性指标,选择频繁性较高的簇的簇心组成子空间代表示例集.双角度融合嵌入技术基于正、负子空间代表示例集和差值嵌入函数,分别从正、负角度挖掘信息,融合两个角度信息获得最终的嵌入向量.在29个数据集上与七个MIL算法进行了对比实验,结果表明,FADE的分类准确率总体上优于七个对比算法,在图像数据集上有显著优势,在文本和网页数据集上也表现良好.
展开更多
关键词
多示例学习
嵌入方法
簇
频繁
性
示例来源
双角度融合
下载PDF
职称材料
题名
多示例学习的簇频繁性分析及双角度融合嵌入
1
作者
杨梅
张靖宇
闵帆
方宇
机构
西南石油大学计算机与软件学院
西南石油大学人工智能研究院
西南石油大学机器学习研究中心
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第4期531-541,共11页
基金
南充市-西南石油大学市校科技战略合作专项资金(23XNSYSX0084,23XNSYSX0062)
浙江省海洋大数据挖掘与应用重点实验室开放课题(OBDMA202102)
国家自然科学基金(61976194)。
文摘
多示例学习(Multi-Instance Learning,MIL)的训练数据是由若干个未带标记的示例组成的带标记的包,基于嵌入的方法,通过将包嵌入成单向量来解决包表示问题,然而大部分现有方法忽略了示例与包的联系,难以保证所选示例的代表性.同时,单角度的嵌入方法无法有效地提取正、负包的差异信息,使嵌入向量的质量较差.提出一种多示例学习的簇频繁性分析及双角度融合嵌入(FADE).簇频繁性分析技术从正、负子空间中分别筛选部分示例作为子空间的簇心,依据簇心将子空间聚类成簇,再计算簇频繁性指标,选择频繁性较高的簇的簇心组成子空间代表示例集.双角度融合嵌入技术基于正、负子空间代表示例集和差值嵌入函数,分别从正、负角度挖掘信息,融合两个角度信息获得最终的嵌入向量.在29个数据集上与七个MIL算法进行了对比实验,结果表明,FADE的分类准确率总体上优于七个对比算法,在图像数据集上有显著优势,在文本和网页数据集上也表现良好.
关键词
多示例学习
嵌入方法
簇
频繁
性
示例来源
双角度融合
Keywords
MIL
embedding method
cluster frequency
instance source
dual⁃perspective fusion
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多示例学习的簇频繁性分析及双角度融合嵌入
杨梅
张靖宇
闵帆
方宇
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部