Protein-protein interaction networks serve to carry out basic molecular activity in the cell. Detecting the modular structures from the protein-protein interaction network is important for understanding the organizati...Protein-protein interaction networks serve to carry out basic molecular activity in the cell. Detecting the modular structures from the protein-protein interaction network is important for understanding the organization, function and dynamics of a biological system. In order to identify functional neighbor- hoods based on network topology, many network cluster identification algorithms have been devel- oped. However, each algorithm might dissect a network from a different aspect and may provide dif- ferent insight on the network partition. In order to objectively evaluate the performance of four com- monly used cluster detection algorithms: molecular complex detection (MCODE), NetworkBlast, shortest-distance clustering (SDC) and Girvan-Newman (G-N) algorithm, we compared the biological coherence of the network clusters found by these algorithms through a uniform evaluation framework. Each algorithm was utilized to find network clusters in two different protein-protein interaction net- works with various parameters. Comparison of the resulting network clusters indicates that clusters found by MCODE and SDC are of higher biological coherence than those by NetworkBlast and G-N algorithm.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 30588001)
文摘Protein-protein interaction networks serve to carry out basic molecular activity in the cell. Detecting the modular structures from the protein-protein interaction network is important for understanding the organization, function and dynamics of a biological system. In order to identify functional neighbor- hoods based on network topology, many network cluster identification algorithms have been devel- oped. However, each algorithm might dissect a network from a different aspect and may provide dif- ferent insight on the network partition. In order to objectively evaluate the performance of four com- monly used cluster detection algorithms: molecular complex detection (MCODE), NetworkBlast, shortest-distance clustering (SDC) and Girvan-Newman (G-N) algorithm, we compared the biological coherence of the network clusters found by these algorithms through a uniform evaluation framework. Each algorithm was utilized to find network clusters in two different protein-protein interaction net- works with various parameters. Comparison of the resulting network clusters indicates that clusters found by MCODE and SDC are of higher biological coherence than those by NetworkBlast and G-N algorithm.