设x是一个实数,a,q是正整数并且满足1≤q≤(logx)~3,(a,q)=1。在本文中我们证明了:如果x≥e^(11.5),则有其中sum from l=1 to q表示 sum from l=1 (l,q)=1 to q。μ(n)表示Mbius函数,φ(x;q,l)=sum from n≡l(mod q) n≤x ∧(n), τ(?)=...设x是一个实数,a,q是正整数并且满足1≤q≤(logx)~3,(a,q)=1。在本文中我们证明了:如果x≥e^(11.5),则有其中sum from l=1 to q表示 sum from l=1 (l,q)=1 to q。μ(n)表示Mbius函数,φ(x;q,l)=sum from n≡l(mod q) n≤x ∧(n), τ(?)=sum from h=1 to q(?)(h)e(h/q)。当存在模q的实特征使得L(s,)有实零点■≥1-logq/0.1077时■=1;否则■=0。展开更多
The distribution of the Pjateckii-Sapiro prime numbers in arithmetic progressions is investigated, and a Bombier i- Vinogr adov typ e mean- value t heorem and anot her almost all resultconcerning this problem are esta...The distribution of the Pjateckii-Sapiro prime numbers in arithmetic progressions is investigated, and a Bombier i- Vinogr adov typ e mean- value t heorem and anot her almost all resultconcerning this problem are established.展开更多
We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
文摘设x是一个实数,a,q是正整数并且满足1≤q≤(logx)~3,(a,q)=1。在本文中我们证明了:如果x≥e^(11.5),则有其中sum from l=1 to q表示 sum from l=1 (l,q)=1 to q。μ(n)表示Mbius函数,φ(x;q,l)=sum from n≡l(mod q) n≤x ∧(n), τ(?)=sum from h=1 to q(?)(h)e(h/q)。当存在模q的实特征使得L(s,)有实零点■≥1-logq/0.1077时■=1;否则■=0。
文摘The distribution of the Pjateckii-Sapiro prime numbers in arithmetic progressions is investigated, and a Bombier i- Vinogr adov typ e mean- value t heorem and anot her almost all resultconcerning this problem are established.
文摘We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.