期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向教育领域的基于SVR-BiGRU-CRF中文命名实体识别方法
被引量:
6
1
作者
张召武
徐彬
+2 位作者
高克宁
王同庆
张乔乔
《中文信息学报》
CSCD
北大核心
2022年第7期114-122,共9页
在教育领域中,命名实体识别在机器自动提问和智能问答等相关任务中都有应用。传统的中文命名实体识别模型需要改变网络结构来融入字和词信息,增加了网络结构的复杂度。另一方面,教育领域中的数据对实体边界的识别要十分精确,传统方法未...
在教育领域中,命名实体识别在机器自动提问和智能问答等相关任务中都有应用。传统的中文命名实体识别模型需要改变网络结构来融入字和词信息,增加了网络结构的复杂度。另一方面,教育领域中的数据对实体边界的识别要十分精确,传统方法未能融入位置信息,对实体边界的识别能力较差。针对以上的问题,该文使用改进的向量表示层,在向量表示层中融合字、词和位置信息,能够更好地界定实体边界和提高实体识别的准确率,使用BiGRU和CRF分别作为模型的序列建模层和标注层进行中文命名实体识别。该文在Resume数据集和教育数据集(Edu)上进行了实验,F_(1)值分别为95.20%和95.08%。实验结果表明,该文方法对比基线模型提升了模型的训练速度和实体识别的准确性。
展开更多
关键词
中文命名实体识别
BiGRU-CRF
简单
向量
表示层
(
svr
)
下载PDF
职称材料
题名
面向教育领域的基于SVR-BiGRU-CRF中文命名实体识别方法
被引量:
6
1
作者
张召武
徐彬
高克宁
王同庆
张乔乔
机构
东北大学计算机科学工程学院
出处
《中文信息学报》
CSCD
北大核心
2022年第7期114-122,共9页
基金
国家自然科学基金联合基金(U1811261)
中央高校基本科研业务费专项资金(N2116019)。
文摘
在教育领域中,命名实体识别在机器自动提问和智能问答等相关任务中都有应用。传统的中文命名实体识别模型需要改变网络结构来融入字和词信息,增加了网络结构的复杂度。另一方面,教育领域中的数据对实体边界的识别要十分精确,传统方法未能融入位置信息,对实体边界的识别能力较差。针对以上的问题,该文使用改进的向量表示层,在向量表示层中融合字、词和位置信息,能够更好地界定实体边界和提高实体识别的准确率,使用BiGRU和CRF分别作为模型的序列建模层和标注层进行中文命名实体识别。该文在Resume数据集和教育数据集(Edu)上进行了实验,F_(1)值分别为95.20%和95.08%。实验结果表明,该文方法对比基线模型提升了模型的训练速度和实体识别的准确性。
关键词
中文命名实体识别
BiGRU-CRF
简单
向量
表示层
(
svr
)
Keywords
Chinese NER
BiGRU-CRF
simple vectors representation layers(
svr
)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向教育领域的基于SVR-BiGRU-CRF中文命名实体识别方法
张召武
徐彬
高克宁
王同庆
张乔乔
《中文信息学报》
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部