通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通...通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通过X射线光电子能谱、接触角和扫描电镜进行表征.研究结果表明,材料表面经氩等离子体处理后,其亲水性得到较大的改善,表面自由能由45.9 m J/m2增加到70.3 m J/m2;体外实验结果证明,BMSc在等离子体处理后材料表面培养24 h后出现明显细胞核,168 h细胞融合成片,通过等离子体处理方法有利于细胞在水凝胶材料表面的黏附和增殖.展开更多
Plasma surface modification (Argon: Hydrogen =0.6: 0.4) of basalt fibers was investigated and the element contents of basalt and wood fibers were determined by X-ray energy dispersion spectroscope (EDS). Configuration...Plasma surface modification (Argon: Hydrogen =0.6: 0.4) of basalt fibers was investigated and the element contents of basalt and wood fibers were determined by X-ray energy dispersion spectroscope (EDS). Configuration of basalt fibers was described by means of confocal Laser Raman microRaman spectrometer and Fourier transform infrared spectroscopy. And the morphology of fiber surface was studied with scanning electron microscope (SEM). The modified samples were characterized by X-ray photoelectron spectra (XPS). The results showed that the roughness of basalt fibers was increased with the increase of exposure time of plasma. At the same time the wettability and surface characteristics such as active groups of NH2, OH were improved as well. Basalt fibers were of good chemical stability, better mechanism intension and thermo-stability etc. They mainly consist of 4-, 4-, 2- . Further experiments demostrated that they were degraded into edaphic matrix after use. Therefore, they were environmentally friendly.展开更多
文摘通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通过X射线光电子能谱、接触角和扫描电镜进行表征.研究结果表明,材料表面经氩等离子体处理后,其亲水性得到较大的改善,表面自由能由45.9 m J/m2增加到70.3 m J/m2;体外实验结果证明,BMSc在等离子体处理后材料表面培养24 h后出现明显细胞核,168 h细胞融合成片,通过等离子体处理方法有利于细胞在水凝胶材料表面的黏附和增殖.
文摘Plasma surface modification (Argon: Hydrogen =0.6: 0.4) of basalt fibers was investigated and the element contents of basalt and wood fibers were determined by X-ray energy dispersion spectroscope (EDS). Configuration of basalt fibers was described by means of confocal Laser Raman microRaman spectrometer and Fourier transform infrared spectroscopy. And the morphology of fiber surface was studied with scanning electron microscope (SEM). The modified samples were characterized by X-ray photoelectron spectra (XPS). The results showed that the roughness of basalt fibers was increased with the increase of exposure time of plasma. At the same time the wettability and surface characteristics such as active groups of NH2, OH were improved as well. Basalt fibers were of good chemical stability, better mechanism intension and thermo-stability etc. They mainly consist of 4-, 4-, 2- . Further experiments demostrated that they were degraded into edaphic matrix after use. Therefore, they were environmentally friendly.