期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Markov理论的加权非等距GM(1,1)预测优化模型 被引量:4
1
作者 李志伟 李克昭 《测绘工程》 CSCD 2016年第12期38-43,共6页
背景值的构造方法是影响加权非等距GM(1,1)预测模型的精度和适应性的关键因素。文中通过等分函数法构造新的背景值对传统的加权非等距GM(1,1)模型进行优化,优化后的模型使其同时适应于高增长指数序列和低增长指数序列,提高传统模型的预... 背景值的构造方法是影响加权非等距GM(1,1)预测模型的精度和适应性的关键因素。文中通过等分函数法构造新的背景值对传统的加权非等距GM(1,1)模型进行优化,优化后的模型使其同时适应于高增长指数序列和低增长指数序列,提高传统模型的预测精度和适应性能力。但是优化后的模型依然易受建模数据随机扰动影响。马尔科夫(Markov)模型具有削弱建模数据的随机扰动性的优势。基于此,将优化的加权非等距GM(1,1)模型和Markov理论有机结合,构建优化的加权非等距Markov-GM(1,1)预测模型。最后,结合秀山湖二期工程的变形实测数据,运用新陈代谢的计算模式进行预测验证。结果表明:优化的加权非等距Markov-GM(1,1)预测模型的拟合和预测精度都优于传统的加权非等距GM(1,1)预测模型,新的预测模型的适用性更强,具有实际的参考价值。 展开更多
关键词 加权非等距GM(1 1)模型 背景值 等分函数 新陈代谢 变形监测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部