This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method u...This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.展开更多
文摘This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.