Ⅰ. MAIN RESULTS Let D be a bounded homogeneous domain in Cn, K(Z, (?)), T(Z, (?)) and H(Z, U) be the Bergman kernel function, Bergman metric matrix and Gauchy-Szeg(?) kernel of D respectively, and P(Z, U...Ⅰ. MAIN RESULTS Let D be a bounded homogeneous domain in Cn, K(Z, (?)), T(Z, (?)) and H(Z, U) be the Bergman kernel function, Bergman metric matrix and Gauchy-Szeg(?) kernel of D respectively, and P(Z, U)=|H(Z, U)|2. H(Z, (?))-1(i. e. a formal Poisson kernel of D). Let Pj=Pj(Z, U)=(P(Z, U))1/j(j=1, 2,…, n), where U belongs to the Silov boundary SD of D,展开更多
基金Project supported by the Science Fund of Academia Sinica
文摘Ⅰ. MAIN RESULTS Let D be a bounded homogeneous domain in Cn, K(Z, (?)), T(Z, (?)) and H(Z, U) be the Bergman kernel function, Bergman metric matrix and Gauchy-Szeg(?) kernel of D respectively, and P(Z, U)=|H(Z, U)|2. H(Z, (?))-1(i. e. a formal Poisson kernel of D). Let Pj=Pj(Z, U)=(P(Z, U))1/j(j=1, 2,…, n), where U belongs to the Silov boundary SD of D,