期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的立体图像舒适度客观评价 被引量:5
1
作者 李素梅 常永莉 段志成 《光学学报》 EI CAS CSCD 北大核心 2018年第6期130-136,共7页
基于卷积神经网络模型,提出一种立体图像舒适度评价方法。该方法无须提前根据特定的任务从图像中人工提取具体的特征,而是模拟人脑处理机制对图像进行层次化的抽象处理,自主提取特征。该方法采用三通道卷积神经网络结构,分别对原始图像... 基于卷积神经网络模型,提出一种立体图像舒适度评价方法。该方法无须提前根据特定的任务从图像中人工提取具体的特征,而是模拟人脑处理机制对图像进行层次化的抽象处理,自主提取特征。该方法采用三通道卷积神经网络结构,分别对原始图像进行主成分分析,以及32×32、256×256两种尺度的分块处理得到三条通道的输入数据集,根据输入数据设计每条通道的网络结构。采用两种尺寸分块处理得到不同尺寸的图像块特征信息,采用主成分分析降维处理得到原始图像的整体信息。此外,通过随机丢弃、局部响应归一化等方法提升算法的评价性能。实验结果表明,以修正线性单元为激活函数、输出层用Softmax分类器,对天津大学TJU立体图像数据库中400幅不同舒适度等级的立体图像样本进行测试,等级分类率正确达94.52%,优于极限学习机、支持向量机算法。 展开更多
关键词 图像处理 立体图像舒适度 客观评价 卷积神经网络 主成分分析 多尺度分块
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部