针对运动突变目标视觉跟踪问题,提出一种基于视觉显著性的两阶段采样跟踪算法.首先,将视觉显著性信息引入到Wang-Landau蒙特卡罗(Wang-Landau Monte Carlo,WLMC)跟踪算法中,设计了结合显著性先验的接受函数,利用子区域的显著性值来引导...针对运动突变目标视觉跟踪问题,提出一种基于视觉显著性的两阶段采样跟踪算法.首先,将视觉显著性信息引入到Wang-Landau蒙特卡罗(Wang-Landau Monte Carlo,WLMC)跟踪算法中,设计了结合显著性先验的接受函数,利用子区域的显著性值来引导马尔可夫链的构造,通过增大目标出现区粒子的接受概率,提高采样效率;其次,针对运动序列中平滑与突变运动共存的特点,建立两阶段采样模型.其中第一阶段对目标当前运动类型进行判定,第二阶段则根据判定结果采用相应算法.突变运动采用基于视觉显著性的WLMC算法,平滑运动采用双链马尔可夫链蒙特卡罗(Marko chain Monte Carlo,MCMC)算法,以此完成目标跟踪,提高算法的鲁棒性.该算法既避免了目标在平滑运动时全局采样导致精度下降的缺点,又能在目标发生运动突变时有效捕获目标.实验结果表明,该算法不仅能有效处理运动突变目标的跟踪问题,在典型图像序列上也具有良好的鲁棒性.展开更多
在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟...在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪算法.该算法将Hamiltonian动力学融入MCMC(Markov chain Monte Carlo)算法,目标状态被扩张为原始目标状态变量与一个动量项的组合.在提议阶段,为抑制由Gibbs采样带来的随机游动行为,提出采用有序超松弛迭代方法来抽取目标动量项.同时,提出自适应步长的Hamiltonian动力学实现方法,在跟踪过程中自适应地调整步长,以减少模拟误差.提出的跟踪算法可以避免传统的基于随机游动的MCMC跟踪算法所存在的局部最优问题,提高了跟踪的准确性而不需要额外的计算时间.实验结果表明,该算法在处理多种类型的突变运动时表现出出色的处理能力.展开更多
文摘针对运动突变目标视觉跟踪问题,提出一种基于视觉显著性的两阶段采样跟踪算法.首先,将视觉显著性信息引入到Wang-Landau蒙特卡罗(Wang-Landau Monte Carlo,WLMC)跟踪算法中,设计了结合显著性先验的接受函数,利用子区域的显著性值来引导马尔可夫链的构造,通过增大目标出现区粒子的接受概率,提高采样效率;其次,针对运动序列中平滑与突变运动共存的特点,建立两阶段采样模型.其中第一阶段对目标当前运动类型进行判定,第二阶段则根据判定结果采用相应算法.突变运动采用基于视觉显著性的WLMC算法,平滑运动采用双链马尔可夫链蒙特卡罗(Marko chain Monte Carlo,MCMC)算法,以此完成目标跟踪,提高算法的鲁棒性.该算法既避免了目标在平滑运动时全局采样导致精度下降的缺点,又能在目标发生运动突变时有效捕获目标.实验结果表明,该算法不仅能有效处理运动突变目标的跟踪问题,在典型图像序列上也具有良好的鲁棒性.
文摘在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪算法.该算法将Hamiltonian动力学融入MCMC(Markov chain Monte Carlo)算法,目标状态被扩张为原始目标状态变量与一个动量项的组合.在提议阶段,为抑制由Gibbs采样带来的随机游动行为,提出采用有序超松弛迭代方法来抽取目标动量项.同时,提出自适应步长的Hamiltonian动力学实现方法,在跟踪过程中自适应地调整步长,以减少模拟误差.提出的跟踪算法可以避免传统的基于随机游动的MCMC跟踪算法所存在的局部最优问题,提高了跟踪的准确性而不需要额外的计算时间.实验结果表明,该算法在处理多种类型的突变运动时表现出出色的处理能力.